NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Marwan, Samiha; Akram, Bita; Barnes, Tiffany; Price, Thomas W. – IEEE Transactions on Learning Technologies, 2022
Theories on learning show that formative feedback that is immediate, specific, corrective, and positive is essential to improve novice students' motivation and learning. However, most prior work on programming feedback focuses on highlighting student's mistakes, or detecting failed test cases after they submit a solution. In this article, we…
Descriptors: Feedback (Response), Formative Evaluation, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding