NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Saint, John; Whitelock-Wainwright, Alexander; Gasevic, Dragan; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2020
The recent focus on learning analytics (LA) to analyze temporal dimensions of learning holds the promise of providing insights into latent constructs, such as learning strategy, self-regulated learning (SRL), and metacognition. These methods seek to provide an enriched view of learner behaviors beyond the scope of commonly used correlational or…
Descriptors: Undergraduate Students, Engineering Education, Learning Analytics, Learning Strategies
Peer reviewed Peer reviewed
Direct linkDirect link
Pardo, Abelardo – Assessment & Evaluation in Higher Education, 2018
Feedback has been identified as one of the factors with the largest potential for a positive impact in a learning experience. There is a significant body of knowledge studying feedback and providing guidelines for its implementation in learning environments. In parallel, the areas of learning analytics or educational data mining have emerged to…
Descriptors: Feedback (Response), Models, Learning Experience, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Lim, Lisa-Angelique; Dawson, Shane; Gaševic, Dragan; Joksimovic, Srecko; Fudge, Anthea; Pardo, Abelardo; Gentili, Sheridan – Australasian Journal of Educational Technology, 2020
Although technological advances have brought about new opportunities for scaling feedback to students, there remain challenges in how such feedback is presented and interpreted. There is a need to better understand how students make sense of such feedback to adapt self-regulated learning processes. This study examined students' sense-making of…
Descriptors: Individualized Instruction, Learning Analytics, Data Collection, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Fincham, Ed; Gasevic, Dragan; Jovanovic, Jelena; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2019
Research into self-regulated learning has traditionally relied upon self-reported data. While there is a rich body of literature that has extracted invaluable information from such sources, it suffers from a number of shortcomings. For instance, it has been shown that surveys often provide insight into students' perceptions about learning rather…
Descriptors: Study Habits, Learning Strategies, Independent Study, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gaševic, Dragan; Jovanovic, Jelena; Pardo, Abelardo; Dawson, Shane – Journal of Learning Analytics, 2017
The use of analytic methods for extracting learning strategies from trace data has attracted considerable attention in the literature. However, there is a paucity of research examining any association between learning strategies extracted from trace data and responses to well-established self-report instruments and performance scores. This paper…
Descriptors: Foreign Countries, Undergraduate Students, Engineering Education, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Pardo, Abelardo; Han, Feifei; Ellis, Robert A. – IEEE Transactions on Learning Technologies, 2017
Self-regulated learning theories are used to understand the reasons for different levels of university student academic performance. Similarly, learning analytics research proposes the combination of detailed data traces derived from technology-mediated tasks with a variety of algorithms to predict student academic performance. The former approach…
Descriptors: Student Centered Learning, Learning Theories, College Students, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Macfadyen, Leah P.; Dawson, Shane; Pardo, Abelardo; Gaševic, Dragan – Research & Practice in Assessment, 2014
In the new era of big educational data, learning analytics (LA) offer the possibility of implementing real-time assessment and feedback systems and processes at scale that are focused on improvement of learning, development of self-regulated learning skills, and student success. However, to realize this promise, the necessary shifts in the…
Descriptors: Network Analysis, Data Analysis, Data Collection, Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Romero-Zaldivar, Vicente-Arturo; Pardo, Abelardo; Burgos, Daniel; Delgado Kloos, Carlos – Computers & Education, 2012
The interactions that students have with each other, with the instructors, and with educational resources are valuable indicators of the effectiveness of a learning experience. The increasing use of information and communication technology allows these interactions to be recorded so that analytic or mining techniques are used to gain a deeper…
Descriptors: Academic Achievement, Prediction, Learning Experience, Data