NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2020
This article discusses estimation of average treatment effects for randomized controlled trials (RCTs) using grouped administrative data to help improve data access. The focus is on design-based estimators, derived using the building blocks of experiments, that are conducive to grouped data for a wide range of RCT designs, including clustered and…
Descriptors: Randomized Controlled Trials, Data Analysis, Research Design, Multivariate Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2015
This report presents the statistical theory underlying the "RCT-YES" software that estimates and reports impacts for RCTs for a wide range of designs used in social policy research. The report discusses a unified, non-parametric design-based approach for impact estimation using the building blocks of the Neyman-Rubin-Holland causal…
Descriptors: Statistics, Computer Software, Inferences, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2013
In school-based randomized control trials (RCTs), a common design is to follow student cohorts over time. For such designs, education researchers usually focus on the place-based (PB) impact parameter, which is estimated using data collected on all students enrolled in the study schools at each data collection point. A potential problem with this…
Descriptors: Student Mobility, Scientific Methodology, Research Design, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z.; Chiang, Hanley S. – Journal of Educational and Behavioral Statistics, 2011
In randomized control trials (RCTs) in the education field, the complier average causal effect (CACE) parameter is often of policy interest, because it pertains to intervention effects for students who receive a meaningful dose of treatment services. This article uses a causal inference and instrumental variables framework to examine the…
Descriptors: Computation, Identification, Educational Research, Research Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2008
Pretest-posttest experimental designs are often used in randomized control trials (RCTs) in the education field to improve the precision of the estimated treatment effects. For logistic reasons, however, pretest data are often collected after random assignment, so that including them in the analysis could bias the posttest impact estimates. Thus,…
Descriptors: Pretests Posttests, Pretesting, Scores, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation
Schochet, Peter Z. – Mathematica Policy Research, Inc., 2005
This paper examines issues related to the statistical power of impact estimates for experimental evaluations of education programs. The focus is on "group-based" experimental designs, because many studies of education programs involve random assignment at the group level (for example, at the school or classroom level) rather than at the student…
Descriptors: Statistical Analysis, Evaluation Methods, Program Evaluation, Research Design