Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Source
Grantee Submission | 9 |
Author
Moeyaert, Mariola | 9 |
Van den Noortgate, Wim | 3 |
Yang, Panpan | 3 |
Beretvas, S. Natasha | 2 |
Declercq, Lies | 2 |
Ferron, John | 2 |
Ferron, John M. | 2 |
Jamshidi, Laleh | 2 |
Xu, Xinyun | 2 |
Akhmedjanova, Diana | 1 |
Bursali, Semih | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Journal Articles | 3 |
Information Analyses | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Fingerhut, Joelle; Xunyun, Xu; Moeyaert, Mariola – Grantee Submission, 2021
A variety of measures have been developed to quantify intervention effects for single-case experimental design studies. Within the family of non-overlap indices, the Tau-U measure is one of the most popular indices. There are several Tau-U variants, each one calculated differently. The appropriateness of each Tau-U variant depends upon the data…
Descriptors: Case Studies, Research Design, Research Tools, Decision Making
Moeyaert, Mariola; Yang, Panpan; Xu, Xinyun; Kim, Esther – Grantee Submission, 2021
Hierarchical linear modeling (HLM) has been recommended as a meta-analytic technique for the quantitative synthesis of single-case experimental design (SCED) studies. The HLM approach is flexible and can model a variety of different SCED data complexities, such as intervention heterogeneity. A major advantage of using HLM is that participant…
Descriptors: Meta Analysis, Case Studies, Research Design, Hierarchical Linear Modeling
Moeyaert, Mariola; Yang, Panpan; Xu, Xinyun – Grantee Submission, 2021
This study investigated the power of two-level hierarchical linear modeling (HLM) to explain variability in intervention effectiveness between participants in context of single-case experimental design (SCED) research. HLM is a flexible technique that allows the inclusion of participant characteristics (e.g., age, gender, and disability types) as…
Descriptors: Hierarchical Linear Modeling, Intervention, Research Design, Participant Characteristics
Declercq, Lies; Jamshidi, Laleh; Fernández-Castilla, Belen; Moeyaert, Mariola; Natasha, Beretvas S.; Ferron, John M.; Van den Noortgate, Wim – Grantee Submission, 2020
To conduct a multilevel meta-analysis of multiple single-case experimental design (SCED) studies, the individual participant data (IPD) can be analyzed in one or two stages. In the one-stage approach, a multilevel model is estimated based on the raw data. In the two-stage approach, an effect size is calculated for each participant and these effect…
Descriptors: Research Design, Data Analysis, Effect Size, Models
Moeyaert, Mariola; Yang, Panpan – Grantee Submission, 2021
This study introduces an innovative meta-analytic approach, two-stage multilevel meta-analysis that considers the hierarchical structure of single-case experimental design (SCED) data. This approach is unique as it is suitable to include moderators at the intervention level, participant level, and study level, and is therefore especially…
Descriptors: Hierarchical Linear Modeling, Meta Analysis, Research Design, Case Studies
Moeyaert, Mariola; Akhmedjanova, Diana; Ferron, John; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The methodology of single-case experimental designs (SCED) has been expanding its efforts toward rigorous design tactics to address a variety of research questions related to intervention effectiveness. Effect size indicators appropriate to quantify the magnitude and the direction of interventions have been recommended and intensively studied for…
Descriptors: Effect Size, Research Methodology, Research Design, Hierarchical Linear Modeling
Miocevic, Milica; Klaassen, Fayette; Geuke, Gemma; Moeyaert, Mariola; Maric, Marija – Grantee Submission, 2020
Single-Case Experimental Designs (SCEDs) have lately been recognized as a valuable alternative tolarge group studies. SCEDs form a great tool for the evaluation of treatment effectiveness in heterogeneous and low-incidence conditions, which are common in the field of communication disorders. Mediation analysis is indispensable in treatment…
Descriptors: Bayesian Statistics, Computation, Intervention, Case Studies
Moeyaert, Mariola; Bursali, Semih; Ferron, John – Grantee Submission, 2020
The COVID-19 outbreak emphasizes the need for alternative methods for data gathering and collaboration among researchers in a virtual research environment. One experimental design that is well suited in a social distancing research context is the single-case experimental design (SCD). SCDs can handle disruptions as: (a) they do not require large…
Descriptors: Research Design, Computer Oriented Programs, Research Methodology, Case Studies
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)