Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Artificial Intelligence | 3 |
Automation | 3 |
Computer Assisted Testing | 3 |
Algorithms | 2 |
Computer Interfaces | 2 |
English | 2 |
Essays | 2 |
French | 2 |
Natural Language Processing | 2 |
Portuguese | 2 |
Prediction | 2 |
More ▼ |
Author
Danielle S. McNamara | 3 |
Mihai Dascalu | 3 |
Stefan Ruseti | 3 |
Ionut Paraschiv | 2 |
Andreea Dutulescu | 1 |
Publication Type
Reports - Research | 3 |
Journal Articles | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Andreea Dutulescu; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Assessing the difficulty of reading comprehension questions is crucial to educational methodologies and language understanding technologies. Traditional methods of assessing question difficulty rely frequently on human judgments or shallow metrics, often failing to accurately capture the intricate cognitive demands of answering a question. This…
Descriptors: Difficulty Level, Reading Tests, Test Items, Reading Comprehension
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays