NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
McNeish, Daniel; Harring, Jeffrey R. – Grantee Submission, 2021
Growth mixture models (GMMs) are a popular method to uncover heterogeneity in growth trajectories. Harnessing the power of GMMs in applications is difficult given the prevalence of nonconvergence when fitting GMMs to empirical data. GMMs are rooted in the random effect tradition and nonconvergence often leads researchers to modify their intended…
Descriptors: Growth Models, Classification, Posttraumatic Stress Disorder, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel; Peña, Armando; Vander Wyst, Kiley B.; Ayers, Stephanie L.; Olson, Micha L.; Shaibi, Gabriel Q. – Prevention Science, 2023
Growth mixture models (GMMs) are applied to intervention studies with repeated measures to explore heterogeneity in the intervention effect. However, traditional GMMs are known to be difficult to estimate, especially at sample sizes common in single-center interventions. Common strategies to coerce GMMs to converge involve post hoc adjustments to…
Descriptors: Prevention, Intervention, Growth Models, Program Effectiveness
McNeish, Daniel; Peña, Armando; Vander Wyst, Kiley B.; Ayers, Stephanie L.; Olson, Micha L.; Shaibi, Gabriel Q. – Grantee Submission, 2021
Growth mixture models (GMMs) are applied to intervention studies with repeated measures to explore heterogeneity in the intervention effect. However, traditional GMMs are known to be difficult to estimate, especially at sample sizes common in single-center interventions. Common strategies to coerce GMMs to converge involve post-hoc adjustments to…
Descriptors: Prevention, Intervention, Growth Models, Program Effectiveness