NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED616149
Record Type: Non-Journal
Publication Date: 2020
Pages: 8
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-
EISSN: N/A
Available Date: N/A
Multi-Document Cohesion Network Analysis: Automated Prediction of Inferencing across Multiple Documents
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S.
Grantee Submission, Paper presented at the IEEE International Conference on Tools with Artificial Intelligence (ICTAI) (32nd, 2020)
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses. Our taxonomy considers three types of responses to comprehension questions from students (N = 146) who read four documents: a) "textbase responses" (i.e., information required for the answer is present in a contiguous short sequence of text); b) "single-document inference responses" (i.e., requiring information from multiple text segments in a single document); and c) "multi-document inference responses" (i.e., information spanning multiple documents is required). The classification task was approached in two ways. First, we extracted features from students' answers to the comprehension questions using linguistic and semantic indices related to textual complexity and an extended Cohesion Network Analysis (CNA) graph to assess semantic links between the answers and the reference documents. Second, we compared different Recurrent Neural Networks (RNNs) architectures that rely on word embeddings to encode both answers and reference documents. Our best model based on RNN's predicts the answer type with an accuracy of 81%.[This paper was published in: "2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)" (pp. 343-348). IEEE.]
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED); Office of Naval Research (ONR) (DOD)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305A190063; R305A180144; R305A180261; N000141712300
Author Affiliations: N/A