ERIC Number: EJ1256824
Record Type: Journal
Publication Date: 2017-Sep
Pages: 13
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1759-2879
EISSN: N/A
Power Analysis for Random-Effects Meta-Analysis
Jackson, Dan; Turner, Rebecca
Research Synthesis Methods, v8 n3 p290-302 Sep 2017
One of the reasons for the popularity of meta-analysis is the notion that these analyses will possess more power to detect effects than individual studies. This is inevitably the case under a fixed-effect model. However, the inclusion of the between-study variance in the random-effects model, and the need to estimate this parameter, can have unfortunate implications for this power. We develop methods for assessing the power of random-effects meta-analyses, and the average power of the individual studies that contribute to meta-analyses, so that these powers can be compared. In addition to deriving new analytical results and methods, we apply our methods to 1991 meta-analyses taken from the Cochrane Database of Systematic Reviews to retrospectively calculate their powers. We find that, in practice, 5 or more studies are needed to reasonably consistently achieve powers from random-effects meta-analyses that are greater than the studies that contribute to them. Not only is statistical inference under the random-effects model challenging when there are very few studies but also less worthwhile in such cases. The assumption that meta-analysis will result in an increase in power is challenged by our findings.
Descriptors: Meta Analysis, Databases, Medical Research, Outcomes of Treatment, Inferences, Models, Research Reports
Wiley-Blackwell. 350 Main Street, Malden, MA 02148. Tel: 800-835-6770; Tel: 781-388-8598; Fax: 781-388-8232; e-mail: cs-journals@wiley.com; Web site: http://bibliotheek.ehb.be:2429/WileyCDA
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A