Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Descriptor
Author
Harring, Jeffrey R. | 2 |
Lee, Daniel Y. | 1 |
McNeish, Daniel | 1 |
Publication Type
Reports - Research | 2 |
Journal Articles | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
McNeish, Daniel; Harring, Jeffrey R. – Grantee Submission, 2021
Growth mixture models (GMMs) are a popular method to uncover heterogeneity in growth trajectories. Harnessing the power of GMMs in applications is difficult given the prevalence of nonconvergence when fitting GMMs to empirical data. GMMs are rooted in the random effect tradition and nonconvergence often leads researchers to modify their intended…
Descriptors: Growth Models, Classification, Posttraumatic Stress Disorder, Sample Size
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics