Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 7 |
Descriptor
Author
Publication Type
Reports - Research | 6 |
Speeches/Meeting Papers | 4 |
Journal Articles | 3 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Romania | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Theories of discourse argue that comprehension depends on the coherence of the learner's mental representation. Our aim is to create a reliable automated representation to estimate readers' level of comprehension based on different productions, namely self-explanations and answers to open-ended questions. Previous work relied on Cohesion Network…
Descriptors: Network Analysis, Reading Comprehension, Automation, Artificial Intelligence
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2021
Text summarization is an effective reading comprehension strategy. However, summary evaluation is complex and must account for various factors including the summary and the reference text. This study examines a corpus of approximately 3,000 summaries based on 87 reference texts, with each summary being manually scored on a 4-point Likert scale.…
Descriptors: Computer Assisted Testing, Scoring, Natural Language Processing, Computer Software
Westera, Wim; Prada, Rui; Mascarenhas, Samuel; Santos, Pedro A.; Dias, João; Guimarães, Manuel; Georgiadis, Konstantinos; Nyamsuren, Enkhbold; Bahreini, Kiavash; Yumak, Zerrin; Christyowidiasmoro, Chris; Dascalu, Mihai; Gutu-Robu, Gabriel; Ruseti, Stefan – Education and Information Technologies, 2020
This article provides a comprehensive overview of artificial intelligence (AI) for serious games. Reporting about the work of a European flagship project on serious game technologies, it presents a set of advanced game AI components that enable pedagogical affordances and that can be easily reused across a wide diversity of game engines and game…
Descriptors: Artificial Intelligence, Educational Games, Educational Technology, Computer Software
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Dascalu, Maria-Dorinela; Ruseti, Stefan; Dascalu, Mihai; McNamara, Danielle S.; Carabas, Mihai; Rebedea, Traian – Grantee Submission, 2021
The COVID-19 pandemic has changed the entire world, while the impact and usage of online learning environments has greatly increased. This paper presents a new version of the ReaderBench framework, grounded in Cohesion Network Analysis, which can be used to evaluate the online activity of students as a plug-in feature to Moodle. A Recurrent Neural…
Descriptors: COVID-19, Pandemics, Integrated Learning Systems, School Closing