Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 9 |
Descriptor
Chemistry | 9 |
Molecular Structure | 9 |
Introductory Courses | 5 |
Science Instruction | 5 |
Student Attitudes | 4 |
Undergraduate Students | 4 |
College Science | 3 |
College Students | 3 |
Scientific Concepts | 3 |
Teaching Methods | 3 |
Biology | 2 |
More ▼ |
Author
Publication Type
Journal Articles | 9 |
Reports - Research | 8 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 6 |
High Schools | 3 |
Secondary Education | 2 |
Audience
Location
Colorado (Boulder) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Stowe, Ryan L.; Scharlott, Leah J.; Ralph, Vanessa R.; Becker, Nicole M.; Cooper, Melanie M. – Journal of Chemical Education, 2021
What we emphasize and reward on assessments signals to students what matters to us. Accordingly, a great deal of scholarship in chemistry education has focused on defining the sorts of performances worth assessing. Here, we unpack observations we made while analyzing what "success" meant across three large-enrollment general chemistry…
Descriptors: Science Tests, Chemistry, Science Education, Large Group Instruction
Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M. – CBE - Life Sciences Education, 2018
Despite the number of university students who take courses in multiple science disciplines, little is known about how they connect concepts between disciplines. Energy is a concept that underlies all scientific phenomena and, as such, provides an appropriate context in which to investigate student connections and misconnections across disciplines.…
Descriptors: Chemistry, Biology, Science Instruction, Energy
Stowe, Ryan L.; Herrington, Deborah G.; McKay, Robert L.; Cooper, Melanie M. – Journal of Chemical Education, 2019
Widespread adoption of the Next Generation Science Standards (NGSS) has created a need to carefully consider how chemistry curricula should support students in understanding the world in terms of atomic/molecular behavior. We argue that Standards-aligned coursework should be "core-ideas centered" due to evidence that curricula embedded…
Descriptors: High School Students, Science Instruction, Chemistry, Standards
Stowe, Ryan L.; Herrington, Deborah G.; McKay, Robert L.; Cooper, Melanie M. – Journal of Chemical Education, 2019
Connecting the behavior of invisible (to the naked eye) particles governed by the principles of quantum mechanics to the world we can see and touch requires a host of inferences, almost none of which can be extrapolated from experience. Molecular-level sensemaking thus relies upon intellectual resources that must be developed in large part by…
Descriptors: Chemistry, Science Curriculum, High School Students, Standards
Cooper, Melanie M.; Williams, Leah C.; Underwood, Sonia M. – Journal of Chemical Education, 2015
The ability to use representations of molecular structure to predict the macroscopic properties of a substance is central to the development of a robust understanding of chemistry. Intermolecular forces (IMFs) play an important role in this process because they provide a mechanism for how and why molecules interact. In this study, we investigate…
Descriptors: Molecular Structure, Chemistry, College Students, Comprehension
Williams, Leah C.; Underwood, Sonia M.; Klymkowsky, Michael W.; Cooper, Melanie M. – Journal of Chemical Education, 2015
Intermolecular forces (IMFs), or more broadly, noncovalent interactions either within or between molecules, are central to an understanding of a wide range of chemical and biological phenomena. In this study, we present a multiyear, multi-institutional, longitudinal comparison of how students enrolled in traditional general chemistry courses and…
Descriptors: Chemistry, Science Instruction, Comparative Analysis, Longitudinal Studies
Klymkowsky, Michael W.; Rentsch, Jeremy D.; Begovic, Emina; Cooper, Melanie M. – CBE - Life Sciences Education, 2016
Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the…
Descriptors: Science Instruction, Biology, Educational Change, Introductory Courses
Cooper, Melanie M.; Underwood, Sonia M.; Hilley, Caleb Z. – Chemistry Education Research and Practice, 2012
Lewis structures are a simplified two dimensional "cartoon" of molecular structure that allow a knowledgeable user to predict the types of properties a particular substance may exhibit. However, prior research shows that many students fail to recognize these structure-property connections and are unable to decode the information…
Descriptors: Test Construction, Test Validity, Test Reliability, Student Surveys
Cooper, Melanie M.; Underwood, Sonia M.; Hilley, Caleb Z.; Klymkowsky, Michael W. – Journal of Chemical Education, 2012
Previously, we found that: (i) many students were unable to construct representations of simple molecular structures; (ii) a majority of students fail to make the important connection between these representations and macroscopic properties of the material; and (iii) they were unable to decode the information contained in such representations.…
Descriptors: Chemistry, Molecular Structure, Secondary School Science, High Schools