NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Mao, Ye; Barnes, Tiffany; Chi, Min; Price, Thomas W. – International Educational Data Mining Society, 2021
Automatically detecting bugs in student program code is critical to enable formative feedback to help students pinpoint errors and resolve them. Deep learning models especially code2vec and ASTNN have shown great success for "large-scale" code classification. It is not clear, however, whether they can be effectively used for bug…
Descriptors: Artificial Intelligence, Program Effectiveness, Coding, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gao, Zhikai; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2021
As Computer Science has increased in popularity so too have class sizes and demands on faculty to provide support. It is therefore more important than ever for us to identify new ways to triage student questions, identify common problems, target students who need the most help, and better manage instructors' time. By analyzing interaction data…
Descriptors: Automation, Classification, Help Seeking, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gitinabard, Niki; Gao, Zhikai; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin F. – Journal of Educational Data Mining, 2023
Few studies have analyzed students' teamwork (pairwork) habits in programming projects due to the challenges and high cost of analyzing complex, long-term collaborative processes. In this work, we analyze student teamwork data collected from the GitHub platform with the goal of identifying specific pair teamwork styles. This analysis builds on an…
Descriptors: Cooperative Learning, Computer Science Education, Programming, Student Projects
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – Journal of Educational Data Mining, 2022
Demand for education in Computer Science has increased markedly in recent years. With increased demand has come to an increased need for student support, especially for courses with large programming projects. Instructors commonly provide online post forums or office hours to address this massive demand for help requests. Identifying what types of…
Descriptors: Computer Science Education, Help Seeking, College Faculty, Teacher Role
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin – International Educational Data Mining Society, 2020
Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two…
Descriptors: Teamwork, Group Activities, Student Projects, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhi, Rui; Marwan, Samiha; Dong, Yihuan; Lytle, Nicholas; Price, Thomas W.; Barnes, Tiffany – International Educational Data Mining Society, 2019
Viewing worked examples before problem solving has been shown to improve learning efficiency in novice programming. Example-based feedback seeks to present smaller, adaptive worked example steps during problem solving. We present a method for automatically generating and selecting adaptive, example-based programming feedback using historical…
Descriptors: Data Use, Feedback (Response), Novices, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and…
Descriptors: Time, Models, Artificial Intelligence, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Price, Thomas W.; Dong, Yihuan; Barnes, Tiffany – International Educational Data Mining Society, 2016
Intelligent Tutoring Systems (ITSs) have shown success in the domain of programming, in part by providing customized hints and feedback to students. However, many popular novice programming environments still lack these intelligent features. This is due in part to their use of open-ended programming assignments, which are difficult to support with…
Descriptors: Intelligent Tutoring Systems, Programming, Data, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sheshadri, Adithya; Gitinabard, Niki; Lynch, Collin F.; Barnes, Tiffany; Heckman, Sarah – International Educational Data Mining Society, 2018
Online tools provide unique access to research students' study habits and problem-solving behavior. In MOOCs [Massive Open Online Courses], this online data can be used to inform instructors and to provide automatic guidance to students. However, these techniques may not apply in blended courses with face to face and online components. We report…
Descriptors: Online Courses, Large Group Instruction, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Mostafavi, Behrooz; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2017
Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…
Descriptors: Artificial Intelligence, Problem Solving, Educational Technology, Technology Uses in Education
Previous Page | Next Page ยป
Pages: 1  |  2