NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhi, Rui; Marwan, Samiha; Dong, Yihuan; Lytle, Nicholas; Price, Thomas W.; Barnes, Tiffany – International Educational Data Mining Society, 2019
Viewing worked examples before problem solving has been shown to improve learning efficiency in novice programming. Example-based feedback seeks to present smaller, adaptive worked example steps during problem solving. We present a method for automatically generating and selecting adaptive, example-based programming feedback using historical…
Descriptors: Data Use, Feedback (Response), Novices, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming