Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Computer Science Education | 4 |
Coding | 3 |
Evaluation Methods | 3 |
Models | 3 |
Programming | 3 |
Programming Languages | 3 |
Artificial Intelligence | 2 |
Assignments | 2 |
Classification | 2 |
Introductory Courses | 2 |
Learning Analytics | 2 |
More ▼ |
Source
International Educational… | 4 |
Author
Barnes, Tiffany | 4 |
Chi, Min | 4 |
Shi, Yang | 4 |
Price, Thomas W. | 3 |
Mao, Ye | 2 |
Marwan, Samiha | 1 |
Price, Thomas | 1 |
Schmucker, Robin | 1 |
Publication Type
Reports - Research | 4 |
Speeches/Meeting Papers | 4 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shi, Yang; Mao, Ye; Barnes, Tiffany; Chi, Min; Price, Thomas W. – International Educational Data Mining Society, 2021
Automatically detecting bugs in student program code is critical to enable formative feedback to help students pinpoint errors and resolve them. Deep learning models especially code2vec and ASTNN have shown great success for "large-scale" code classification. It is not clear, however, whether they can be effectively used for bug…
Descriptors: Artificial Intelligence, Program Effectiveness, Coding, Computer Science Education
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics