ERIC Number: ED586518
Record Type: Non-Journal
Publication Date: 2016
Pages: 9
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-
EISSN: N/A
Available Date: N/A
{ENTER}ing the Time Series {SPACE}: Uncovering the Writing Process through Keystroke Analyses
Allen, Laura K.; Jacovina, Matthew E.; Dascalu, Mihai; Roscoe, Rod D.; Kent, Kevin M.; Likens, Aaron D.; McNamara, Danielle S.
Grantee Submission, Paper presented at the International Conference on Educational Data Mining (9th, 2016)
This study investigates how and whether information about students' writing can be recovered from basic behavioral data extracted during their sessions in an intelligent tutoring system for writing. We calculate basic and time-sensitive keystroke indices based on log files of keys pressed during students' writing sessions. A corpus of prompt-based essays was collected from 126 undergraduates along with keystrokes logged during the session. Holistic scores and linguistic properties of these essays were then automatically calculated using natural language processing tools. Results indicated that keystroke indices accounted for 76% of the variance in essay quality and up to 38% of the variance in the linguistic characteristics. Overall, these results suggest that keystroke analyses can help to recover crucial information about writing, which may ultimately help to improve student models in computer-based learning environments. [This paper was published in: "Proceedings of the 9th International Conference on Educational Data Mining," p22-29.]
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: Higher Education
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305A120707
Author Affiliations: N/A