NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tae Yeon Kwon; A. Corinne Huggins-Manley; Jonathan Templin; Mingying Zheng – Journal of Educational Measurement, 2024
In classroom assessments, examinees can often answer test items multiple times, resulting in sequential multiple-attempt data. Sequential diagnostic classification models (DCMs) have been developed for such data. As student learning processes may be aligned with a hierarchy of measured traits, this study aimed to develop a sequential hierarchical…
Descriptors: Classification, Accuracy, Student Evaluation, Sequential Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Tae Yeon Kwon; A. Corinne Huggins-Manley; Jonathan Templin; Mingying Zheng – Grantee Submission, 2023
In classroom assessments, examinees can often answer test items multiple times, resulting in sequential multiple-attempt data. Sequential diagnostic classification models (DCMs) have been developed for such data. As student learning processes may be aligned with a hierarchy of measured traits, this study aimed to develop a sequential hierarchical…
Descriptors: Classification, Accuracy, Student Evaluation, Sequential Approach
Ziying Li; A. Corinne Huggins-Manley; Walter L. Leite; M. David Miller; Eric A. Wright – Educational and Psychological Measurement, 2022
The unstructured multiple-attempt (MA) item response data in virtual learning environments (VLEs) are often from student-selected assessment data sets, which include missing data, single-attempt responses, multiple-attempt responses, and unknown growth ability across attempts, leading to a complex and complicated scenario for using this kind of…
Descriptors: Sequential Approach, Item Response Theory, Data, Simulation