Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Author
Birk, James P., Ed. | 5 |
Moore, John W., Ed. | 3 |
Brooks, David W. | 2 |
Abera Gure | 1 |
Asoodeh, Mike | 1 |
Barowy, Bill | 1 |
Bonnette, Roy | 1 |
Borman, Stu | 1 |
Burkholder, Phillip R. | 1 |
Cifre, Jose G. Hernandez | 1 |
Cole, Renee S. | 1 |
More ▼ |
Publication Type
Education Level
Higher Education | 7 |
Postsecondary Education | 5 |
High Schools | 4 |
Secondary Education | 3 |
Elementary Education | 2 |
Elementary Secondary Education | 1 |
Grade 10 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Teachers | 43 |
Practitioners | 30 |
Students | 5 |
Researchers | 3 |
Administrators | 1 |
Policymakers | 1 |
Location
Australia | 1 |
Colorado (Boulder) | 1 |
Ethiopia | 1 |
Japan | 1 |
Louisiana | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shimelis Kebede Kekeba; Abera Gure; Teklu Tafesse Olkaba – Interactive Technology and Smart Education, 2025
Purpose: The purpose of this study was to investigate the impact of using a jigsaw learning strategy integrated with computer simulation (JLSICS) on the academic achievement and attitudes of students, along with exploring the relationships between them in the process of learning about acids and bases. Design/methodology/approach: The research…
Descriptors: Teaching Methods, Learning Strategies, Computer Simulation, Technology Uses in Education
McCarthy, Chris; Lan, Jie; Li, Jieying – PRIMUS, 2019
We present noncompetitive adsorption as "particles in a box with one sticky wall." We start with a general model that can be modeled as a simple ordinary differential equation (ODE). To verify the ODE students run a computer simulation. The ODE's solution imperfectly fits the simulation's data. This leads to the diffusion partial…
Descriptors: Equations (Mathematics), Mathematical Models, Problem Solving, Computer Simulation
Watson, Sandy White – Science Teacher, 2019
Educational researchers have long advocated for the integration of computer simulations (sims) in science courses, citing the positive effects these tools have on students' science conceptual comprehension (Develaki 2017; Hannafin, West, and Shepard 2009; Lamb et al. 2011). In fact, Liao (2007) investigated the learning differences between…
Descriptors: Chemistry, Science Instruction, Models, Computer Simulation
Unlu, Serkan; Kiray, Seyit Ahmet – Online Submission, 2022
This book has been prepared to introduce common technological tools that can be used in science education in the distance education process. Although most of the applications introduced in the book are used in face-to-face education, this book focuses on their use in the distance science education process. In the Introduction part of the book, the…
Descriptors: Computer Software, Videoconferencing, Distance Education, Pandemics
Whiteley, Richard V., Jr. – Journal of Chemical Education, 2015
Although the simulation of an oxidation/reduction titration curve is an important exercise in an undergraduate course in quantitative analysis, that exercise is frequently simplified to accommodate computational limitations. With the use of readily available computer algebra systems, however, such curves for complicated systems can be generated…
Descriptors: Science Instruction, Computer Simulation, Algebra, Scientific Concepts
Levin, Ilya, Ed.; Tsybulsky, Dina, Ed. – IGI Global, 2017
The role of technology in educational settings has become increasingly prominent in recent years. When utilized effectively, these tools provide a higher quality of learning for students. "Optimizing STEM Education With Advanced ICTs and Simulations" is an innovative reference source for the latest scholarly research on the integration…
Descriptors: Information Technology, STEM Education, Cooperative Learning, Inquiry
Khan, Samia – Journal of Science Education and Technology, 2011
Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…
Descriptors: Computer Simulation, Heuristics, Student Surveys, Chemistry
Gilbuena, Debra M.; Kirsch, F. Adam; Koretsky, Milo D. – Advances in Engineering Education, 2012
This paper is intended for engineering educators, high school curriculum designers, and high school teachers interested in integrating authentic, project-based learning experiences into their classes. These types of projects may appear complex, but have many advantages. We characterize the successful implementation of one such project, the…
Descriptors: Engineering Education, High Schools, Secondary School Curriculum, Secondary School Teachers
Evans, Steven T.; Huang, Xinqun; Cramer, Steven M. – Chemical Engineering Education, 2010
The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…
Descriptors: Computer Simulation, Biotechnology, Problem Based Learning, Courses
Urban, Michael J., Ed.; Falvo, David A., Ed. – IGI Global, 2016
The application of technology in classroom settings has equipped educators with innovative tools and techniques for effective teaching practice. Integrating digital technologies at the elementary and secondary levels helps to enrich the students' learning experience and maximize competency in the areas of science, technology, engineering, and…
Descriptors: Elementary Secondary Education, STEM Education, Outcomes of Education, Technology Integration
Shalliker, R. A.; Kayillo, S.; Dennis, G. R. – Journal of Chemical Education, 2008
Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…
Descriptors: Chemistry, Science Instruction, Laboratory Experiments, Computer Simulation
de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez – European Journal of Physics, 2008
This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…
Descriptors: Plastics, Monte Carlo Methods, Computer Simulation, Chemistry
Burkholder, Phillip R.; Purser, Gordon H.; Cole, Renee S. – Journal of Chemical Education, 2008
Intermolecular forces play an important role in many aspects of chemistry ranging from inorganic to biological chemistry. These forces dictate molecular conformation, species aggregation (including self-assembly), trends in solubility and boiling points, adsorption characteristics, viscosity, phase changes, surface tension, capillary action, vapor…
Descriptors: Advanced Courses, Chemistry, Molecular Structure, Science Instruction

Brooks, David W.; And Others – Journal of Chemical Education, 1985
The simulation of titration and qualitative analysis experiments by means of computer-driven laser videodisc recordings is described. (JN)
Descriptors: Chemical Analysis, Chemistry, College Science, Computer Simulation

Guell, Oscar A.; Holcombe, James A. – Analytical Chemistry, 1990
Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)
Descriptors: Chemical Analysis, Chemistry, College Science, Computer Simulation