

High Volume Print Forming

3D Printing for Volume Manufacturing

IEEE August 25, 2015

About EoPlex

- Headquarters: San Jose, California
 - R&D, Sales and Marketing
- Subsidiary of ASTI since 2012
- Production Facilities in Penang
- Expanded Manufacturing Capability in Cavite, Philippines – Q2 2016
- Creator of 3D High Volume Print Forming process (HVPF™) for multi material additive products

3D Printing

 "Money will be made with manufacturing, not with prototypes," Tim Caffrey, Wohlers

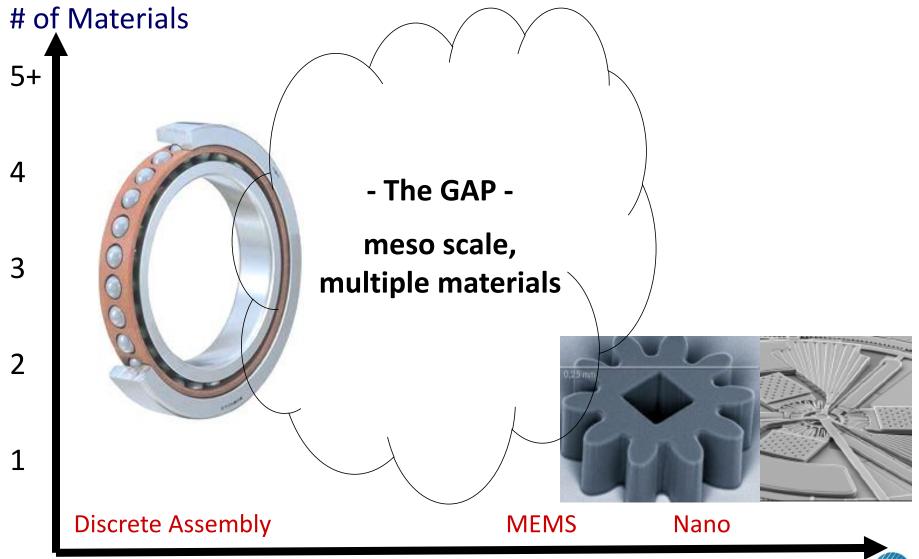
3D Printing

- "Money will be made with manufacturing, not with prototypes," Tim Caffrey, Wohlers
- "I think the next big innovation that is needed is 3D printing with multimaterials—that is, the ability to print any material at any location in three-dimensional space." Tim Simpson, Professor, Mechanical and Industrial Engineering at Penn State University and ASME AM3D chair

Advanced Layered Deposition Technology

Featuring:

- ⇒Real engineering materials (Ceramics and Metals)
- ⇒Multiple materials in each device
- ⇒Exceptional design flexibility
- ⇒Highly scalable through panel processing



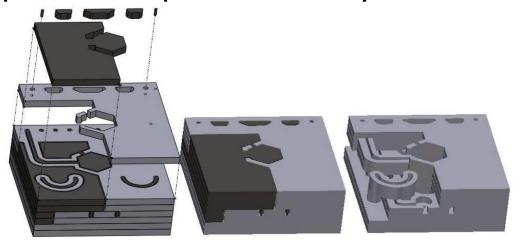
Works for a Wide range of Applications with a Wide range of Materials

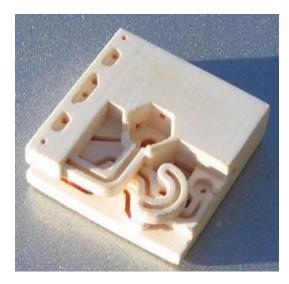
EoPlex EoPlex 3D HVPF™ Fills the Gap

Between Macro and Micro Fabrication

Largest

Size: Log Scale


Smallest


Member of ASTI

High Volume Print Forming

Sequential deposition of layers

- Ceramic or metal loaded paste for final structure
- Fugitive material to create precision internal voids
- Fugitive removal/sintering yields complex structure composed of high performance materials
- Panel processing makes it cost effective

Keys to High Volume Print Forming

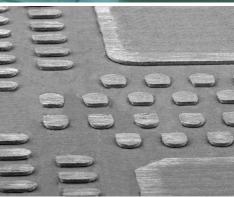
Basic Elements Must Work Together

Materials

Paste properties work with chosen deposition technique

Materials plus maturation step determine final materials properties

Maturation

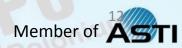


Precursor Materials that Enable Processing and Final Properties

- Pastes are precursors in "printable" format
 - Ceramics & metals w/wide range of properties
 - Fugitives to create precise & clean void spaces
- Physical properties of paste must be compatible with deposition method
 - Rheology Par
- Particle size distribution
 - Solids loading Particle Morphology
- Final materials properties result from precursors and maturation process

Materials Demonstrated So Far

Ceramics:


- Glass-ceramics: Sintering temp. from 700°C to 1,000°C
- Piezoelectric materials (PZT)
- Refractory oxides: Alumina (Al₂O₃), silica, (SiO₂), zirconia (Zr₂O₃)

Metals:

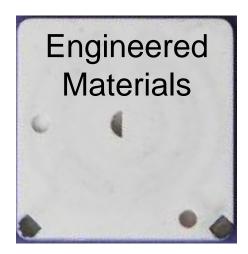
- Structural metals: Nickel alloys, stainless steel
- Conductors: Palladium, silver, gold, platinum

Passive component materials:

- Custom low loss dielectrics
- Buried and surface resistors

Fugitives: Key to design flexibility

- Space holders that burn away without a trace and without damaging the structure
- Create void spaces within a structure, with or without communication to the outside
- Enables a true multi-material 3D printer



Unique Capabilities Depend on Materials Formulations

- Carefully engineered materials and processes work together - protected by patents and trade secrets
- Multi-Material system that can be fired together to yield a stable end product
- Fugitives that burn away without residue and don't damage the surrounding structure

Various "Printing" Techniques

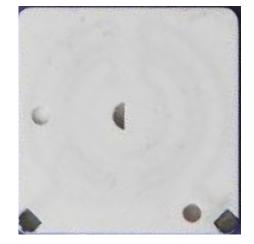
Chosen to match objectives of the application

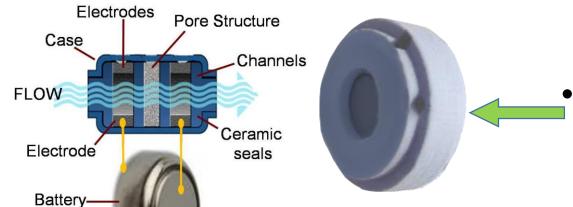
- Screen printing is the standard
 - Greatest flexibility with layer thickness, materials
 - Cost effective
- Transfer printing for finer feature size
- Ink Jetting Computer controlled but slow
- Photolithography Best of both worlds
 - Best possible resolution with thin layers
 - Very thick layers w/screen print type resolution
- Patent Pending on true multi-materials 3D printer

Cost Effective Volume Production by "Panel Processing"

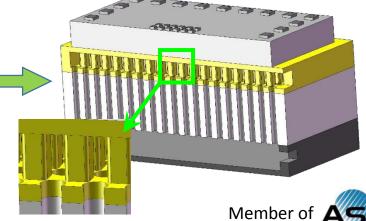
- Large panels w/many units in ea. panel
 - Panels very from 100 mm to ~450 mm
 - Hundreds to thousands of units per panel

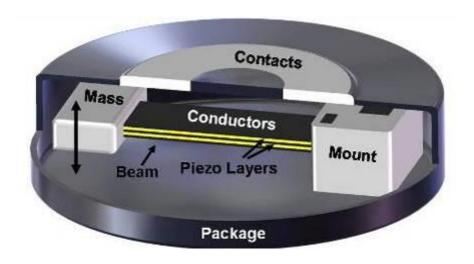
 Multi-material 3D printer is capable of creating a 3 dimensional matrix of parts


So, What's it Good For



Fluidics are a Perfect Fit

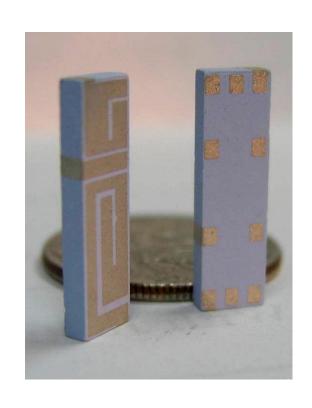

Methanol reformer for micro fuel cells


 Electrophoretic pump for micro fuel cells

 Loop heat pipe to cool high power semiconductors

Piezo Materials Enable Sensors, Actuators, Energy Harvesters & more

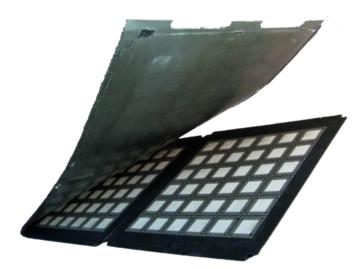
- PZT and metals in small complex structures
- Fugitive materials create space for moving parts
- Building a complete system in situ



Electronic Wiring Structures Like Chip Ceramic Antennas

Conceptually simple, EoPlex processes reduce cost and enhance performance.

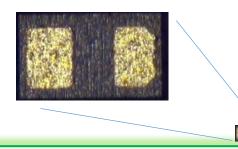
- Greater design freedom
- Materials optimized for the app.
 cut cost & maximize performance
- Novel panel processing reduces labor, materials & equipment cost.



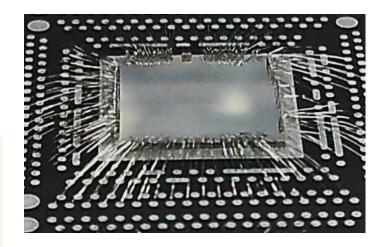
Many Opportunities But One Had An Immediate Multi Billion \$ Market

EoPlex Configurable Sintered Interconnect – CSI™

A More Capable Replacement for QFN leadframes



CSI™ is a Vehicle for Expanding QFN Packages Capability


01005 (.4mm X .2mm), 2 lead

CSI™ Package Benefits

- ✓ Multi-row, lead counts to >500
- ✓ Min. metal = higher performance
- ✓ Improved thermals & electricals
- ✓ Finished package to ≤ 250µ thin
- ✓ Design flexibility

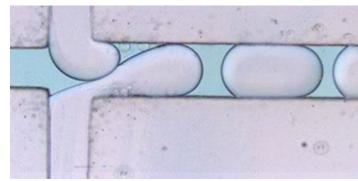
CSI™ QFN replaced 4 layer BGA

Broadening Our Scope to Leverage the Technology

Multi Materials 3D Printing is a Game Changer

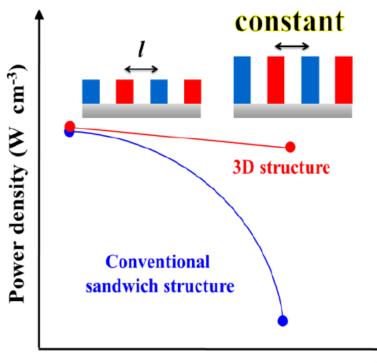
Volume production of real world products using materials optimized for the application, **not** the process

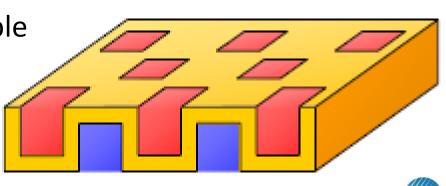
What Are the Best Applications Going Forward



• HVPF™ is Ideally Suited for Meso Scale to Micro Scale Fluidic Devices

- Micro reactors for flow chemistry
 - an emerging market
 - Better control of mixtures and conditions greatly increase yields
 - Better control of temperature and smaller "at-risk" volumes increase safety
 - Highly scalable in a smaller footprint than batch chemistry
- Components for micro fuel cells
 - a promising area of development
 - Reformers
 - Electro osmotic pumps
 - Thermal packaging

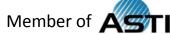



Multi Material 3D Printing Enables Highly Efficient Li Ion Battery

- Conventional sandwich structure sacrifices power for energy
- Multi-materials 3D printing enables solid state battery
 - Solid electrolyte is a game changer but it needs to be thin
 - Improves safety for high energy electrodes
 - Enables Li metal rechargeable
- Scalable from very small to electric vehicle size

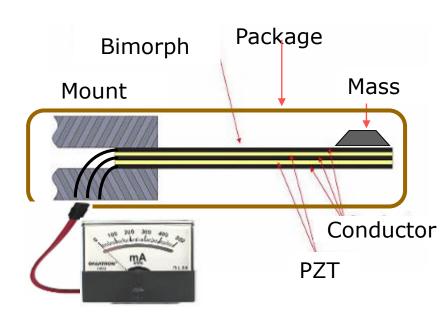
Energy density (W h cm⁻³)

Member of **Z**



Chemical Sensors

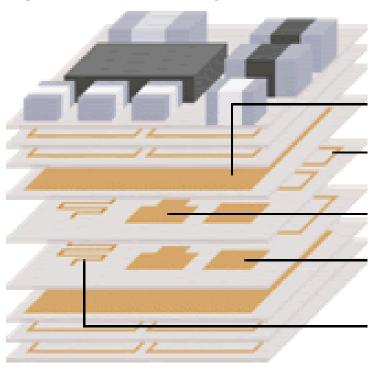
- Automotive emission control sensors for the next generation of cleaner Internal Combustion engines
 - Advanced electrochemical materials technology
 - Precision forming technology to create the low mass measurement cell
- Small low power sensors for CO,
 CO₂ and Hydrocarbon



Piezo Materials are Challenging **But Highly Useful**

- Cofired PZT and metals in small complex structures
- Fugitive materials create space for moving parts
- Building a complete system in situ enables integration
- Applications
 - Energy Harvesters
 - Sensors
 - Actuators

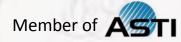
Piezo Energy Harvester



Internet of Things

- 13 Billion connected devices today;
 50 billion by 2020
- Multi-material 3D printing can integrate many basic components – just add chips
 - Interconnect modules
 - Antennas
 - Filters
 - A broad range of sensors
 - Acutators
 - Power sources
 - Li metal batteries
 - Piezo energy harvesters
 - Solar cells

Features Of the Technology


- Forms thousands of complex parts simultaneously
- Can include 3D components and internal cavities
- Components include one or many materials
- Extremely wide selection of materials
- No hard tooling simple photo tools or straight from the computer

3D High Volume Print Forming Technology Benefits

- Big design advantages compared to existing methods
 - Wider range of materials to optimize structures
 - Create features that were nearly impossible before
- No hard tooling required
 - Reduces cost
 - Cuts prototyping/manufacturing time substantially
- Highly cost effective with "panel processing"

Thank You