Digital TV (DTV) Market Trends and DRAM Requirements

October 2015

©2015 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Statements regarding products, including regarding their features, availability, functionality, or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron trademarks are the property of Micron Technology. Inc. All other trademarks are the property of their respective owners.

Agenda

- Key Features and Technology Trends
- DTV System and SoC Architecture
- DRAM Memory Usage in DTVs
- DRAM Market Model for DTVs

Key Features Trends

- Resolution and screen size increasing
- Expectations of PC-like experience (graphics, Internet, browsing)
- More human interface
- CPUs need more multi-tasking

2010

- LCD, PDP TV, and CRT TV
- Max FHD resolution
- Major screen size less than 50"

2015

- Consolidation to LCD TV
- 60Hz/120Hz TV
- Smart TV + web browsing
- 3D TV, 2D→3D TV, 3D graphic
- USB host
- Complex FRC; video processing requires powerful CPU

2018

- Quantum Dot TV and OLED TV
- 24% of 4K TV
- Up to 240Hz TV
- PC-like Internet/web browsing experience
- More human interface
- Bigger screen sizes 70"-100"
- Multi tasking CPU for complicated decoding/ processing power

Source: Micron and Industry Analysts http://www.cnet.com/news/tvs-at-ces-2015-go-beyond-4k/; http://4k.com/top-5-trends-4k-technology-next-four-years/

DTV Market Trends in 2015

Responding Positive 4K TV Market

- Forecasting 60Mu 4K TVs in 2017
- Various positioning, high-end to mainstream 4K TVs
- Continuous effort to reduce 4K TV price

Formed "UHD Alliance" in 2015

• Built Ecosystem, Key TV Makers Filmmakers & Content Providers : Samsung, LG, Sony, Panasonic, Sharp

Walt Disney, WB, 20th C Fox, Netflix

Teamed up partnership

Collaborating to accelerate UHD Adoption

More 4K Content Providers

Provider	Date	Supported UHDTV
Netflix	4/14	SS, LG, Panasonic, Sony, Vizio
Amazon	10/14	Samsung, LG, Sony 4K, Vizio
M-Go	11/14	Samsung 4K UHD
Sony Video	7/14	Sony
Comcast	12/14	Free to XFINITY (VOD)
Direct TV	11/14	SS UHD, DirectTV Genie HD DVR (VOD)
YouTube	2014	Computer with 4K (VOD)

UHD is more than 4K (PQ is important)

- HDR (High Dynamic Range)
- Quantum Dot Technology

Need more memories (Gb/Set & Bandwidth/set) as UDH TV gets better video and graphics ~3GB density per set 2016 DTV System ~45GB/s bandwidth ЕММС Embedded o NOR 8/16GB e.MMC/set 8-16GB Two chip € FRC TCON 4K Decoder Processo ~3GB/set DDR3 DDR3 DDR3 40~45 GB/s

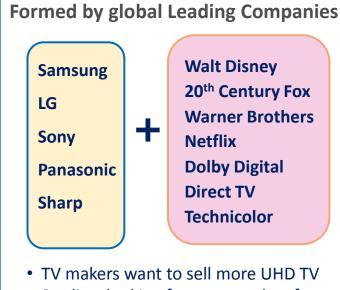
Source: Micron and Industry Analysts

http://www.digitaltrends.com/computing/what-hardware-do-you-need-to-run-stuff-at-4k-resolution-on-your-pc,

Many Operating System from 2015 DTV

- Major TV makers have their own TV Operating System
- TV becomes smarter and smarter: requires optimized operating system to support faster TV processor
- Korea : Samsung-Tizen, LG-WebOS2
- Japan : Sony- Android TV, Panasonic-Firefox
- China : Alibaba Yun OS, Tencent TOS+, Xiaomi: MIUI, Baidu - own Baidu's OS

Increasing Mix of Memories Drives DRAM TAM High


	2014		2018		
	Gb/Set	% Mkt	Gb/Set	% Mkt	24% TV set
Low	1.4	56%	1.5	30%	drives 50% of
Mid	6.8	39%	16	46%	DTV DRAM
High	20	5%	32	24%	TAM in 2018
Gb/Set	4.5		15.6		

UHD Alliance

Challenges for 4K UHD today...

- Optimized content
 Content coding/decoding
- Delivery methods
 Bandwidth concerns
- UHD Alliance Announced During CES 2015
 - Goal of UHD Alliance
 - Set premium quality standards for UHD 4K content, delivery, and establish a "healthy UHD ecosystem"
 - Make sure the content looks really good, figure out how it's delivered, including next-generation features such as HDR, Wide Color Gamut, High Frame Rate, and immersive 3D audio
 - Determine best way to enable production, distribution and consumption of content and playback capability of devices
 - TV brands, Hollywood film studios, content distributors and technology companies come together
 - Movie studios hope the alliance can help make video look better, will benefit true UHD experience by identifying products and content

• Studios, looking for more outlets for digital content

Source: Micron and Industry Analysts

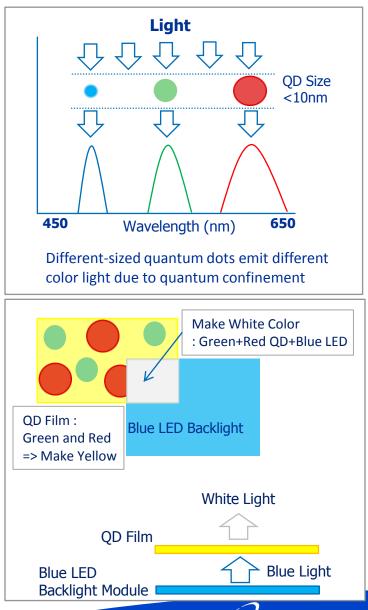
http://www.uhdalliance.org/wp-content/uploads/UHD-Alliance-Announcement-Press-Release.pdf

October 30, 2015 Contract Cont

Quantum Dot Technology

- Tiny particles, Nano-crystal semiconductors
- Glow when light is shined on them
- Electronic characteristics are closely related to size and shape; size determines color
 - Larger dots emit longer wavelengths (red)
 - Smaller dots emit shorter wavelengths (green)
- Two sizes of dots in these TVs
 - Glow red and green, billions of them in a quantum-dot TV
 - Saturating a sheet of film with a bunch of quantum dots
 - When blue LED shines on the quantum dot-saturated sheet of film, the dots start glowing red and green
 => All three combine to create the ideal white light

Better Color performance


- Increased color gamut on LCD screens
- Improved color accuracy purer whites, more precise colors
- Higher peak brightness
- Higher color saturation

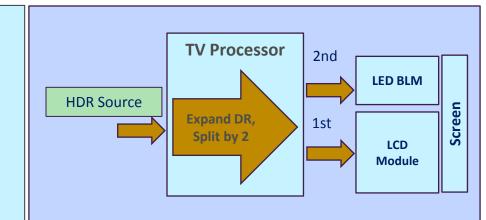
Source: Micron and Industry Analysts

http://www.wired.com/2015/01/primer-quantum-dot/; https://en.wikipedia.org/wiki/Quantum_dot;

https://en.wikipedia.org/wiki/Quantum_dot_display; http://www.nanosysinc.com/what-we-do/quantum-dots/

October 30, 2015 ©2015 Micron Technology, Inc.

HDR (High Dynamic Range) Trends

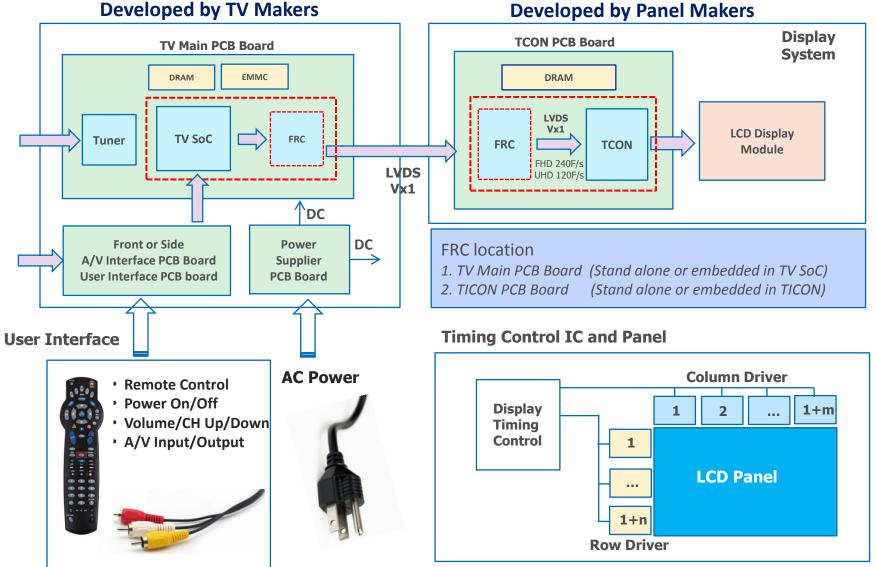

Netflix announced collaboration with LG, Sony at 2015 CES

- Anticipating most of original content in HDR by end of 2015
- Working with UHD Alliance : HDR into the 'Ultra HD' standard,
- Working with film producers to make video in 4K HDR
- HDR content
 - : Working on 60 original series in 2015, including *Marco Polo*, a drama series

HDR Contents Bandwidth

HDR contents requires about 20-30 % more bandwidth than the equivalent resolution

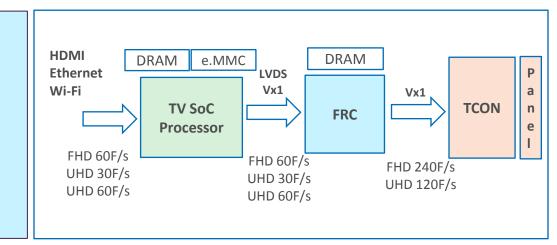
- 4K normally in 15 Mbps; 4K HDR will require 18 Mbps
- 2K in 5-6 Mbps; 2K HDR will require 8 Mbps

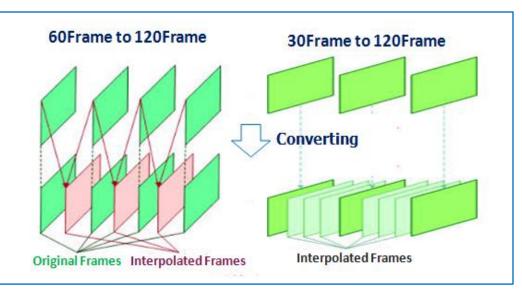

HDR source, two data in stream

- HDR algorithm, in TV SoC, expand its dynamic range
- Split into two streams composing an HDR image:
- The 1st : RGB image to LCD
- The 2nd : Luminance image to LEDs. luminance gray levels on the individual LED

DTV System Structure

Developed by TV Makers

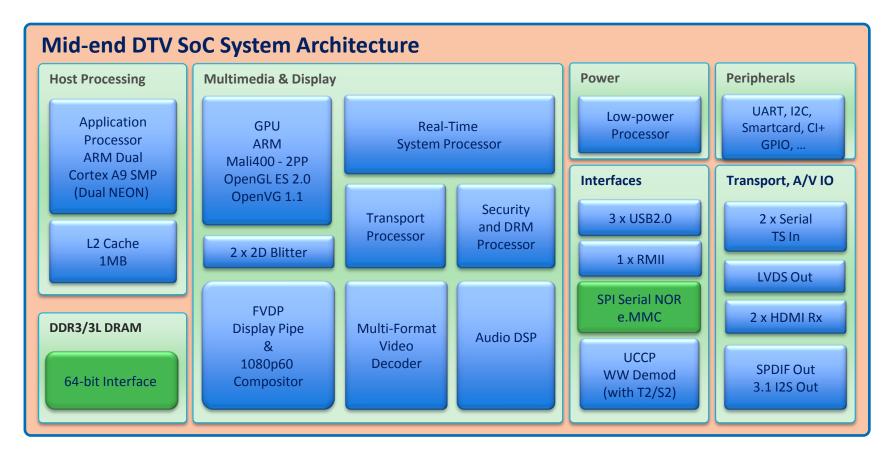

Frame Rate Converter (FRC)


FRC (Frame Rate Converter)

- $30/60 \text{ FPS} \rightarrow 120 \text{ FPS}, \rightarrow 240 \text{ FPS}$
- Motion estimation/compensation •
- Super resolution •
- Picture quality improvement: contrast, color, sharpness, gamma

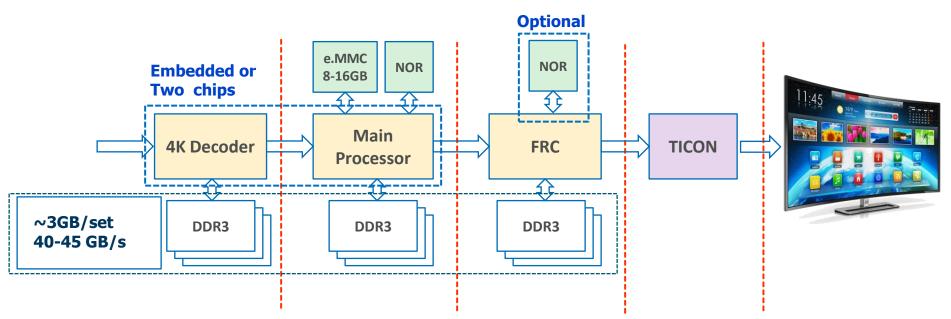
FRC is driving more DRAM bandwidth increase because

- Panel is moving to 120 FPS, 240FPS
 - Video processor needs to make more fake frame
- Image quality needs compensating •
 - Processor need more processing power, more memory bandwidth



Source: Micron and Industry Analysts http://compression.ru/video/frame rate conversion/index en frcn.html

DTV SoC (System On Chip) Architecture

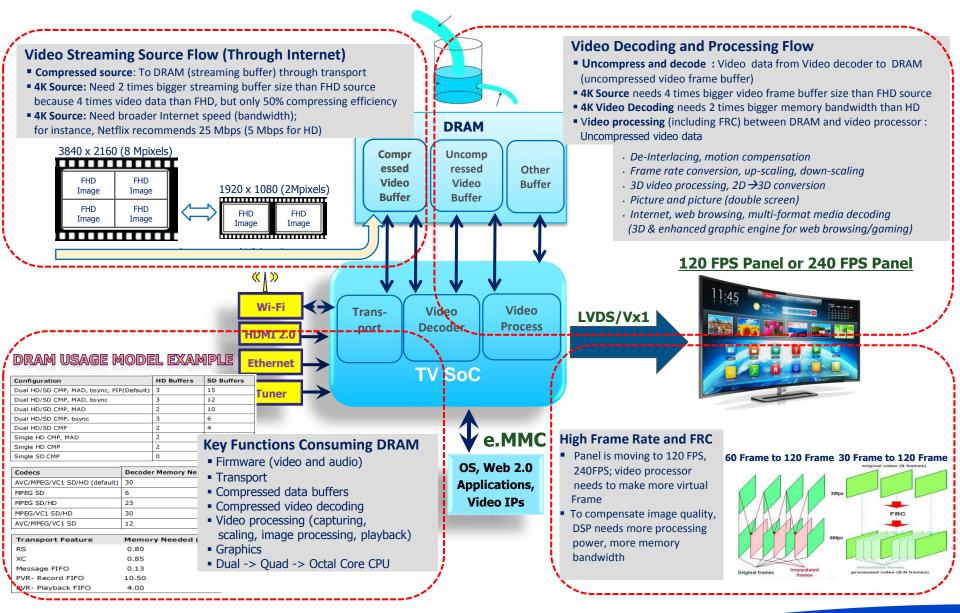

Composed of mainly:
 Decoder, video processor, CPU, GPU, memory controller,
 Interface (transmitter, receiver)

Source: Micron and Industry Analysts www.arm.com; androidforums.com; www.eetimes.com

4K UHD TV System and DRAM

2016 High-end 4K TV Platform

4K Decoder	Main TV Processor	FRC	TICON	Panel
 3x 1Gb DDR3 (x16) 1866/2133MT/s ~3Gb, 12.8GB/s 	 4x 4Gb DDR3 (x16) 1866/2133MT/s ~16Gb, 17GB/s xMb SNOR (faster, reliable boot-up 	 4x 1Gb DDR3 (x16) 1866/2133MT/s ~4Gb, 17GB/s 64Mb~128Mb SNOR (faster, reliable boot-up) 	 TICON for high-end TV, has embedded DRAM (for frame buffer) 	 LCD with LED OLED Quantum Dot 120 FPS

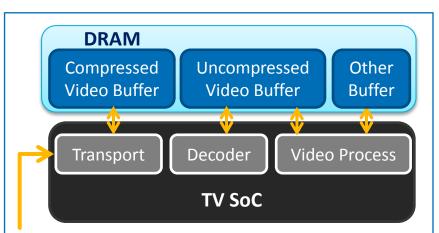

Source: Micron and Industry Analysts

http://www.digitaltrends.com/home-theater/everything-you-need-to-know-about-4k-ultra-hd/ https://en.wikipedia.org/wiki/Ultra-high-definition_television http://vr-zone.com/articles/haswell-just-in-time-for-4k-uhd-tv/33956.html

Micron

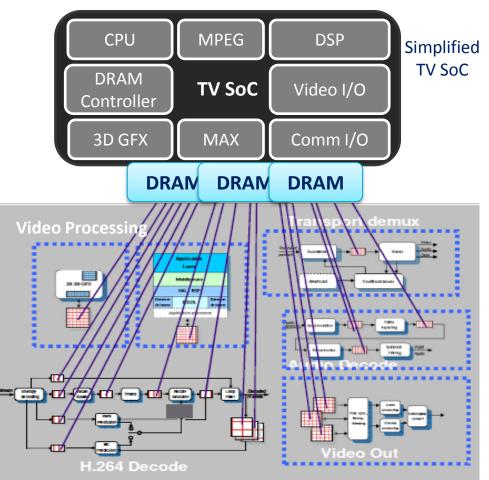
©2015 Micron Technology, Inc.

DRAM Usage in Video Processing



Source: Micron and Industry Analysts

https://en.wikipedia.org/wiki/Video_processing; www.socionext.com; http://www.slideserve.com/tymon/digital-ty-soc


DRAM/DTV SoC Interface Structure

Compressed Video Stream

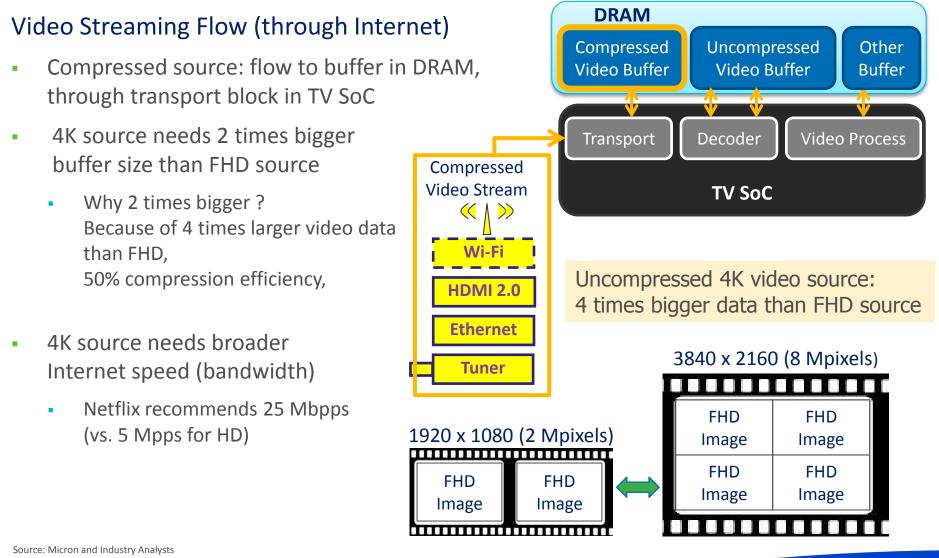
- Buffering compressed video stream before decoding by decoder
 - => 4K TV will require 2 times bigger buffering size than 2k (FHD) TV
- Requires uncompressed video buffer for multiple video processing support
 - => 4K TV will require 4 times bigger buffering size than 2K (FHD) TV

 DRAM is engaged in every function inside TV SoC

icron[®]

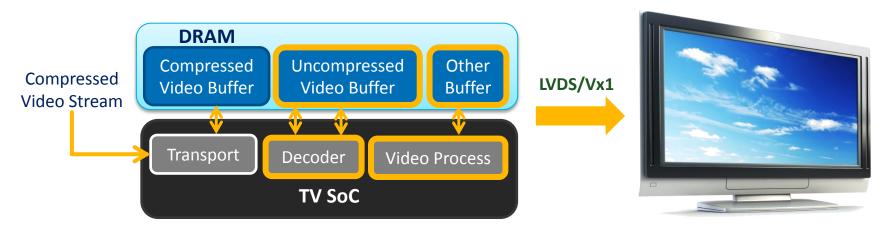
https://en.wikipedia.org/wiki/Video_processing; www.socionext.com; http://www.slideserve.com/tymon/digital-tv-soc

Major Density and DRAM Bandwidth Consumers


- Compressed Video Decoding largest memory consumer in system
- Firmware (Video and Audio) application software
- Transport Block
 - Receives incoming compressed data streams and de-multiplexes the video and audio
- Compressed Data Buffers
 - Simultaneous decodes are supported by the system
- Video Decoding (H.264, H.265, multimedia format)
- Video Processing
 - Capturing, scaling, image processing, playback
- Graphics
 - Height, bit depth(x-bit per pixel), resolution, the number of display layers
 => directly impact the memory requirements

Source: Micron and Industry Analysts

https://en.wikipedia.org/wiki/Video_processing; www.socionext.com; http://www.slideserve.com/tymon/digital-tv-soc; www.renesser


DRAM Usage in Compressed Video Processing

icron

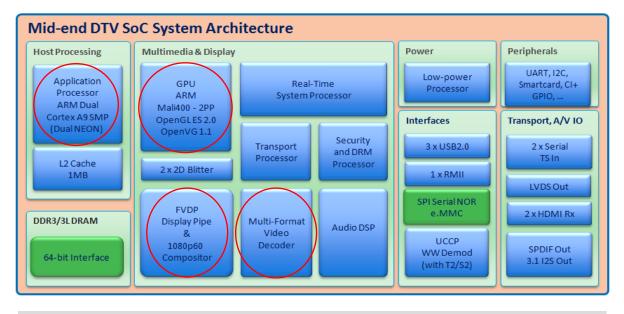
https://en.wikipedia.org/wiki/Video processing; www.socionext.com; http://www.slideserve.com/tymon/digital-tv-soc; www.renesas.com

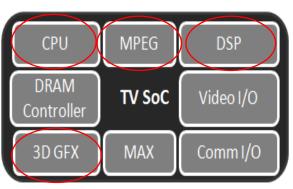
DRAM Usage in Uncompressed Video Processing

Video Decoding and Processing Flow

120 FPS panel or 240 FPS panel

- Video decoder sends uncompressed and decoded video stream to DRAM (uncompressed video buffer)
 - 4K source needs 4 times bigger video frame buffer size than FHD source
 - 4K video decoding needs more than 2 times bigger memory bandwidth than HD decoding
- Uncompressed video processing (including FRC) between DRAM and video processor
 - De-interlacing, MEMC (Motion Estimation & Compensation)
 - FRC (Frame Rate Conversion), Up-Scaling, Down-Scaling, Picture-and-Picture (double screen)
 - 3D video processing, $2D \rightarrow 3D$ conversion
 - Internet, web browsing, multi-format media decoding
 - 3D and enhanced graphic engine for web browsing/gaming


Source: Micron and Industry Analysts


16

https://en.wikipedia.org/wiki/Video_processing; www.socionext.com; http://www.slideserve.com/tymon/digital-tv-soc; www.renesas.com

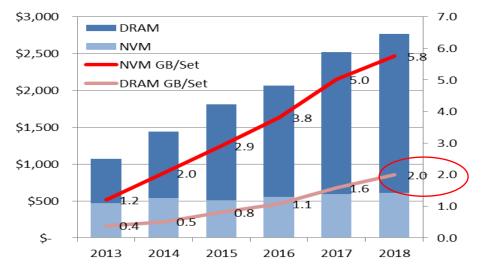
DRAM Bandwidth Usage Model

DRAM bandwidth usage in TV

- Take 60% of total:
 - Decoding
 - Video processing
 - Graphics
 - CPU

Source: Micron and Industry Analysts

https://en.wikipedia.org/wiki/Video_processing; www.socionext.com; http://www.slideserve.com/tymon/digital-tv-soc; www.renesas.com



DRAM Market Model

	\frown					
Year	2015	2016	2017	2018	2019	2020
TV Set(M unit)	240	244	252	261	268	275
Revenue(M)	1,245	1,354	1,597	1,970	2,333	2,633

Market Size (TAM)
 1.25 B\$(2015) to 2.6 B\$ (2020)

=> ~100% Growth

• 2GB/set in 2018

Mixed between low-, mid-, high-end TVs

Source: Micron Market Model 2015

• Major TV Customers in 2015

Samsung, LG, Sony take over 50% share of total DRAM TAM

	2014		2018		
	GB/Set	% Mkt	GB/Set	% Mkt	
Low	0.2	56%	0.2	2 30%	
Mid	0.9	39%	2	46%	
High	2.5	5%	4	24%	
GB/Set	0.6			2	

 24% high-end TVs (mostly 4KTV) drives 50% of DTV DRAM TAM in 2018

