Video Compression: Principles, Practice, and Standards

John G. Apostolopoulos Streaming Media Systems Group HP Labs, Palo Alto, CA japos@hpl.hp.com

Video Coding Goals for Today's Talk

Goals:

- Provide brief overview of image & video coding and key standards
- Assume no prior knowledge of compression
- Explain the "alphabets soup" of coding standards, acronyms, etc

Outline

- Why do we need compression?
 - Image compression
 - Color processing, DCT, etc
 - Video compression
 - Exploit temporal dimension of video signal Prediction
 - Generic (MPEG-type) video coder architecture
 - Current video compression standards
 - What are they?
 - What do the standards specify?
 - Brief overview of H.264 / MPEG-4 AVC video coding standard

Motivation for Compression: Example of HDTV Video Signal

- Problem:
 - Raw video contains an immense amount of data
 - Communication and storage capabilities are limited & expensive
- Example HDTV video signal:
 - 720x1280 pixels/frame, progressive scanning at 60 frames/s:

 $\left(\frac{720 \times 1280 \, pixels}{frame}\right) \left(\frac{60 \, frames}{\sec}\right) \left(\frac{3colors}{pixel}\right) \left(\frac{8bits}{color}\right) = 1.3Gb/s$

- 20 Mb/s HDTV channel bandwidth
- \rightarrow Requires compression by a factor of 70 (equivalent to 0.35 bits/pixel)

Example Video Applications and Required Compression Ratios

Video Format	Pixels/frame	Fps	bits/pixel	Raw bit rate	Channel bit rate	Required compression ratio
HDTV	720 x 1280	60	24	1.3 Gb/s	20 Mb/s (HDTV)	~ 70
SDTV	480 x 720	30	24	250 Mb/s	5 Mb/s (DVD)	~ 50
CIF	288 x 352	30	24	73 Mb/s	384 kb/s (3G)	~ 190
	144 x 176	15	24	9 Mb/s	64 kb/s (3G)	~ 140

Wireless video today

Wireless video soon

John G. Apostolopoulos September 27, 2005

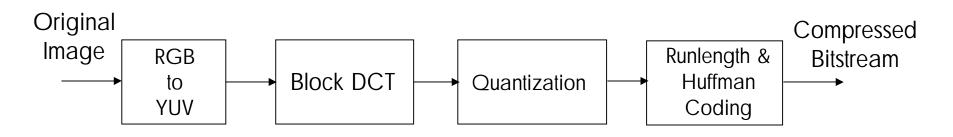
Achieving Compression

- Reduce redundant or repeated information
 - Temporal: Adjacent frames highly correlated
 - Spatial: Nearby pixels are often correlated
 - Color space: RGB components are correlated
 - \rightarrow Relatively straightforward to exploit
- Reduce irrelevant information
 - Perceptually unimportant information, i.e. what the human visual system (HVS) can not see
 - \rightarrow Difficult to model and exploit

Video Spatial and Temporal Redundancy

- Why can video be compressed?
 - Video contains much spatial and temporal redundancy.
- Spatial redundancy: Neighboring pixels are similar
- Temporal redundancy: Adjacent frames are similar

Compression is achieved by exploiting the spatial and temporal redundancy inherent to video



Outline

- Why do we need compression?
- Image compression
 - Color processing, DCT, etc
 - Video compression
 - Exploit temporal dimension of video signal Prediction
 - Generic (MPEG-type) video coder architecture
 - Current video compression standards
 - What are they?
 - What do the standards specify?
 - Brief overview of H.264 / MPEG-4 AVC video coding standard

Video Coding Image Compression: Overview

- Coding an image (single frame):
 - RGB to YUV color-space conversion
 - Partition image into 8x8-pixel blocks
 - 2-D DCT of each block
 - Quantize each DCT coefficient
 - Runlength and Huffman code the nonzero quantized DCT coefficients
- \rightarrow Basis for the JPEG Image Compression Standard
- \rightarrow JPEG-2000 uses wavelet transform and arithmetic coding

John G. Apostolopoulos September 27, 2005

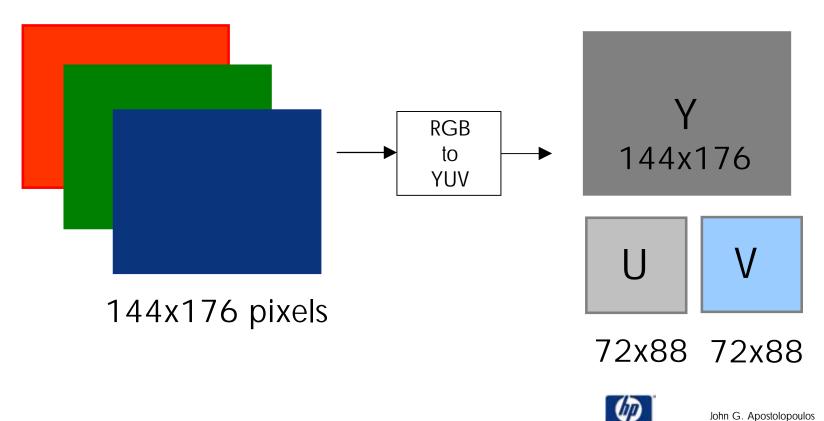
Color Space Processing

- Important properties
 - RGB components are highly correlated
 - HVS perception differs for luminance than for chrominance
- Goal: Convert RGB to a different color space where these properties can be exploited
- 3x3 Linear color-space transformation:

$- R G B \rightarrow Y U V$	$\left\lceil Y \right\rceil$	[.299	.587	.114	$\left\lceil R \right\rceil$
- Y: Luminance	U =	.299 147 .615	289	.436	G
– U & V: Chrominance	$\lfloor V \rfloor$.615	515	100	$\left\lfloor B \right\rfloor$

Color Space Processing (cont.)

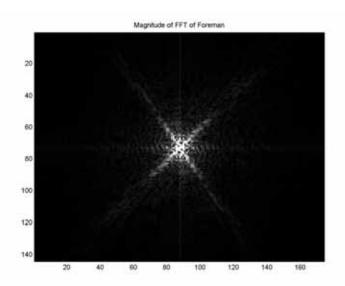
Advantages of color space conversion:


- HVS has lower spatial frequency response to U and V than to Y
 - \rightarrow Reduce sampling density for U and V
- HVS has lower sensitivity to U and V than to Y
 - \rightarrow Quantize U and V more coarsely
- Reasonable assumption: An RGB image requires 3x bit rate of B&W image (single-color image)
- Key result: RGB image only requires ~1.25x bit rate

Color Space Processing (cont.)

RGB color components are:

- 1) Converted to YUV
- 2) U and V components are subsampled by 2x2



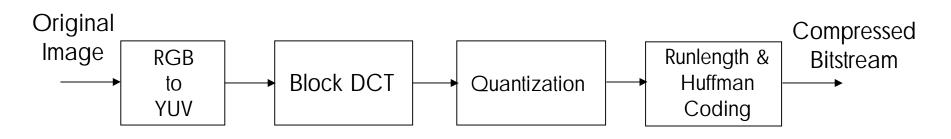
September 27, 2005

Transform Image Coding

First frame of Foreman Sequence

Magnitude of FFT of Foreman

- Goal: Transform image so that most of the information (energy) is concentrated into only a small fraction of the coefficients
 - Coding only these small fraction of the coefficients and discarding the rest can often lead to excellent reconstructed quality
 - \rightarrow The more <u>energy compaction</u> the better!
- Enables perceptual processing (exploiting HVS response to different frequency components)

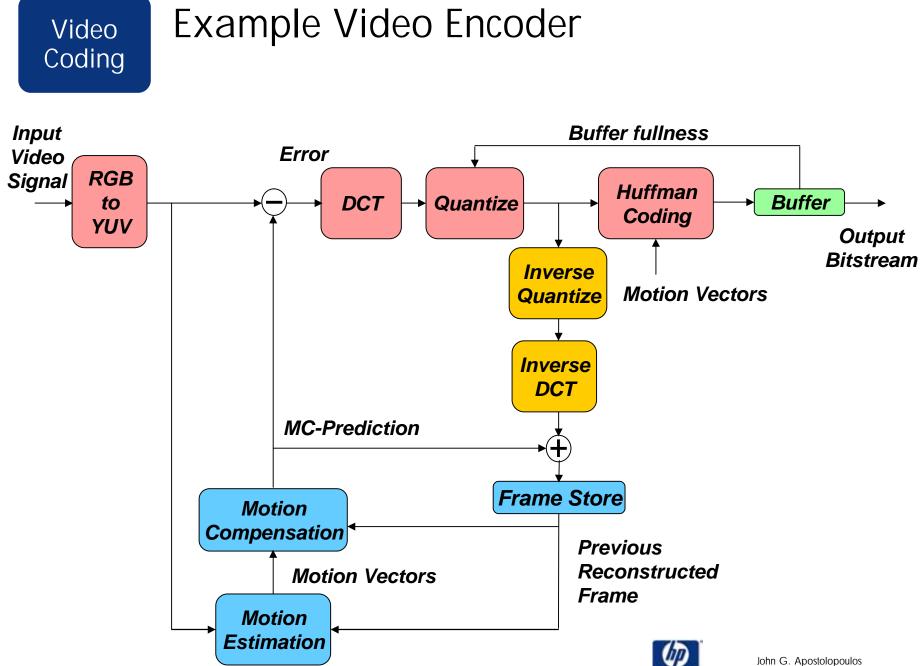


Spatial Processing: Block DCT

- Block Discrete Cosine Transform (DCT)
 - Split image into 8x8 pixel blocks
 - Each block independently transformed and processed
 - Compute 8x8 2-D DCT of each block
 - Quantize and encode each block
- Advantages:
 - Enables simple, spatially-adaptive processing
 - Reduces computation and memory requirements
 - Suitable for parallel processing
- Basic building block for most current image and video compression standards including:
 - JPEG, MPEG-1/2/4, H.261/3/4

Image Compression: Video Coding Summary

- Coding an image (single frame):
 - RGB to YUV color-space conversion
 - Partition image into 8x8-pixel blocks
 - 2-D DCT of each block
 - Ouantize each DCT coefficient
 - Runlength and Huffman code the nonzero quantized DCT coefficients
- \rightarrow Basis for the JPEG Image Compression Standard
- \rightarrow JPEG-2000 uses wavelet transform and arithmetic coding



John G. Apostolopoulos September 27, 2005

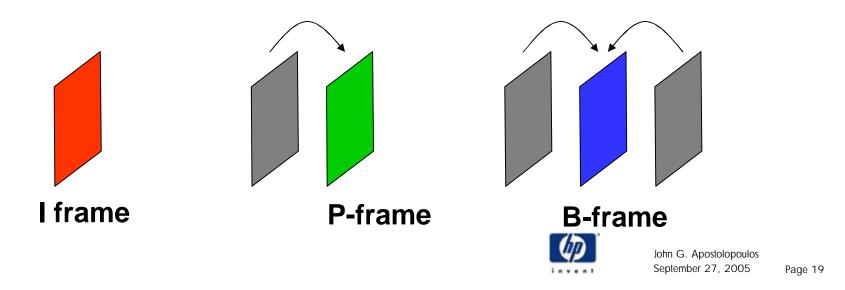
Outline

- Why do we need compression?
- Image compression
 - Color processing, DCT, etc
- Video compression
 - Exploit temporal dimension of video signal Prediction
 - Generic (MPEG-type) video coder architecture
 - Current video compression standards
 - What are they?
 - What do the standards specify?
 - Brief overview of H.264 / MPEG-4 AVC video coding standard

September 27, 2005

inven

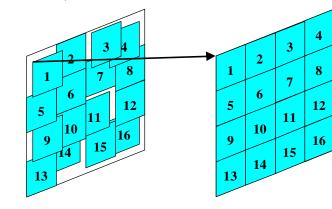
Page 17


Video Coding Video Compression

- Video: Sequence of frames (images) that are <u>related</u>
 - Related along the temporal dimension
- Main addition over image compression
 - Temporal redundancy
 - Usually high frame rate: Significant temporal redundancy
 - \rightarrow Video coder must exploit the temporal redundancy

Video Compression

- Goal: Exploit the temporal redundancy
- Predict current frame based on previously coded frames
- Three types of coded frames:
 - I-frame: Intra-coded frame, coded independently of all other frames
 - P-frame: Predictively coded frame, coded based on previously coded frame
 - B-frame: Bi-directionally predicted frame, coded based on both previous and future coded frames


Prediction for Two Consecutive Frames: Block-Matching Motion Estimation & Motion-Compensated Prediction

Previously Coded Frame (Reference Frame) Current Frame (To be Predicted)

Block-matching overview:
1) Split current frame into 16x16-pixel blocks
2) Find best match for each block from prior frame

Reference Frame

Predicted Frame

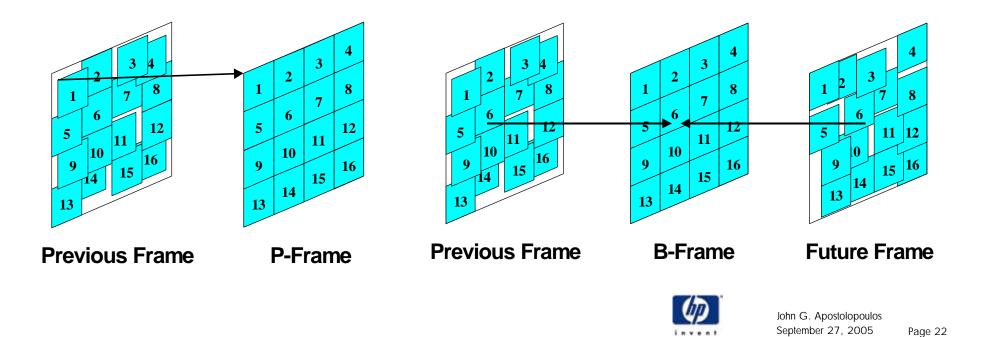
Example: MC-Prediction for Two Consecutive Frames (cont.)

Prediction of Current Frame

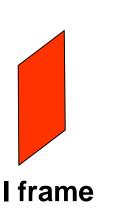
Video

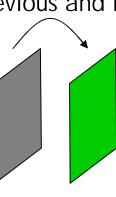
Coding

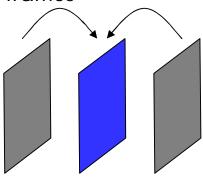
Prediction Error (Residual)



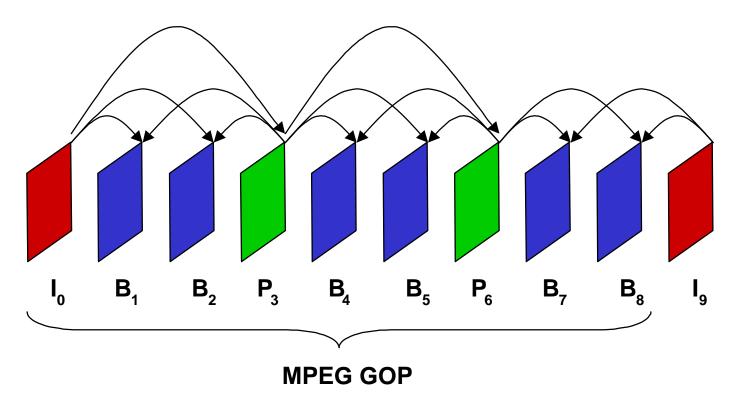
John G. Apostolopoulos September 27, 2005 Page 21


Video Coding MC-Prediction and Bi-Directional MC-Prediction (P- and B-frames)


- Motion compensated prediction: Predict the current frame based on reference frame(s) while compensating for the motion
- Examples of block-based motion-compensated prediction (P-frame) and bi-directional prediction (B-frame):


Video Compression

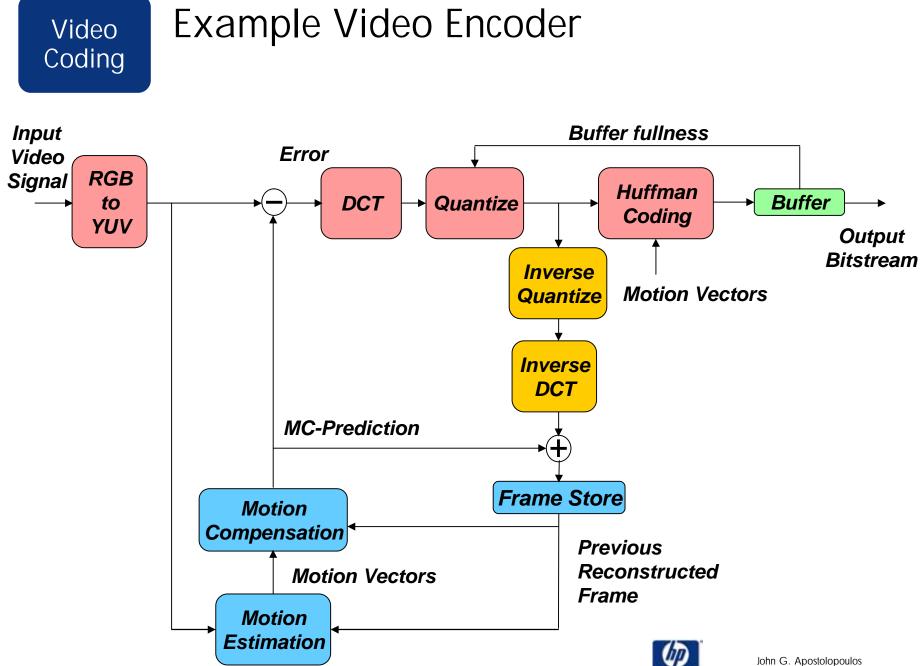
- Main addition over image compression:
 - Exploit the temporal redundancy
- Predict current frame based on previously coded frames
- Three types of coded frames:
 - I-frame: Intra-coded frame, coded independently of all other frames
 - P-frame: Predictively coded frame, coded based on previously coded frame
 - B-frame: Bi-directionally predicted frame, coded based on both previous and future coded frames


P-frame

Video Coding Example Use of I-,P-,B-frames: MPEG Group of Pictures (GOP)

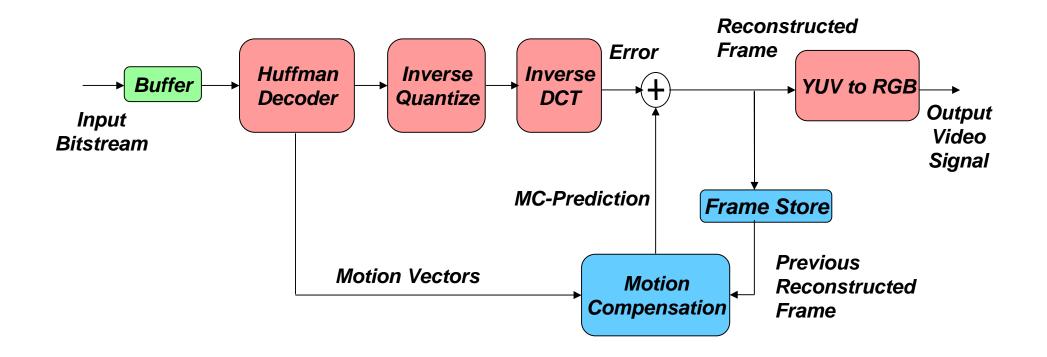
• Arrows show prediction dependencies between frames

Summary of Temporal Processing


- Use MC-prediction (P & B frames) to reduce temporal redundancy
- MC-prediction yields:
 - 1) Motion vectors
 - 2) MC-prediction error \rightarrow Code with conventional image coder
- Sometimes MC-prediction may perform badly
 - Examples: Complex motion, new imagery (occlusions)
 - Approach:
 - 1. Identify frame or individual blocks where prediction fails
 - 2. Code without prediction

Basic Video Compression Architecture

- Exploiting the redundancies:
 - Temporal: MC-prediction (P and B frames)
 - Spatial: Block DCT
 - Color: Color space conversion
- Scalar quantization of DCT coefficients
- Zigzag scanning, runlength and Huffman coding of the nonzero quantized DCT coefficients



September 27, 2005

inven

Page 27

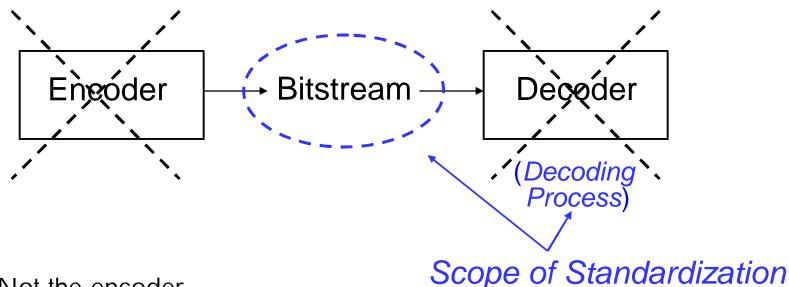
Video Coding Example Video Decoder

Outline

- Why do we need compression?
- Image compression
 - Color processing, DCT, etc
- Video compression
 - Exploit temporal dimension of video signal Prediction
 - Generic (MPEG-type) video coder architecture
- Current video compression standards
 - What are they?
 - What do the standards specify?
 - Brief overview of H.264 / MPEG-4 AVC video coding standard

Motivation for Standards

- Goal of standards:
 - Ensuring interoperability: Enabling communication between devices made by different manufacturers
 - Promoting a technology or industry
 - Reducing costs

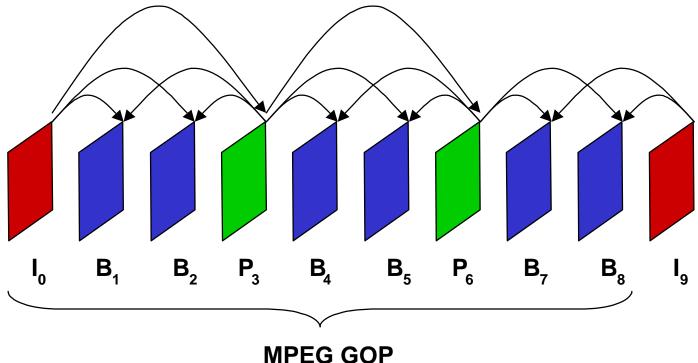


What do the Standards Specify?

• Not the encoder

• Not the decoder

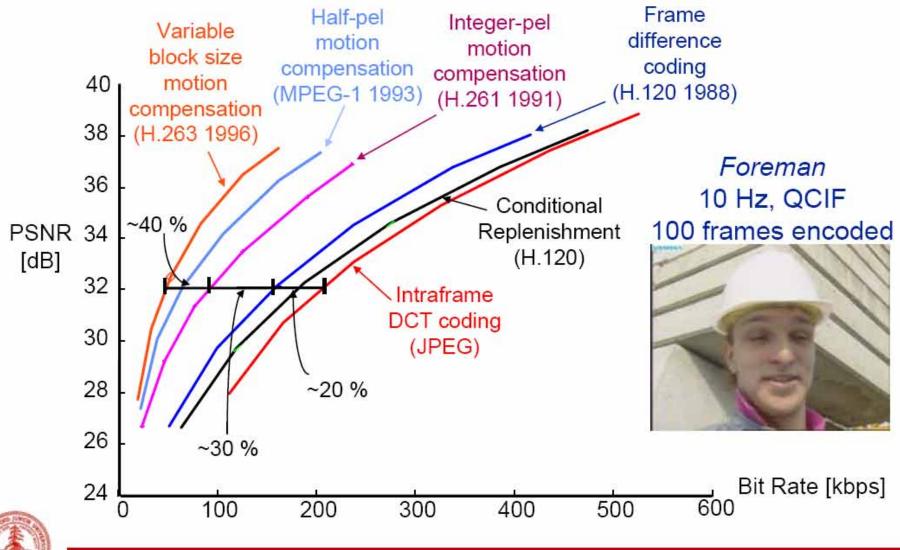
- Just the <u>bitstream syntax</u> and the <u>decoding process</u> (e.g. use IDCT, but not how to implement the IDCT)
 - $\rightarrow\,$ Enables improved encoding & decoding strategies to be employed in a standard-compatible manner


Current Image and Video Compression Standards

Standard	Application	Bit Rate
JPEG	Continuous-tone still-image compression	Variable
H.261	Video telephony and teleconferencing over ISDN	p x 64 kb/s
MPEG-1	Video on digital storage media (CD-ROM)	1.5 Mb/s
MPEG-2	Digital Television	2-20 Mb/s
H.263	Video telephony over PSTN	33.6-? kb/s
MPEG-4	Object-based coding, synthetic content, interactivity	Variable
JPEG-2000	Improved still image compression	Variable
H.264 / MPEG-4 AVC	Improved video compression	10's kb/s to Mb/s
ISO: JPEG & MF	PEG family of standards	

Video Coding MPEG Group of Pictures (GOP) Structure

- Composed of I, P, and B frames
- Arrows show prediction dependencies



- Periodic I-frames enable random access into the coded bitstream
- Parameters: (1) Spacing between I frames, (2) number of B frames between I and P frames
 John G. Apostolopoulos

September 27, 2005

Page 34

Video compression progress

Bernd Girod: EE398 Image and Video Compression

Video Coding Standards no. 24

Outline

- Why do we need compression?
- Image compression
 - Color processing, DCT, etc
- Video compression
 - Exploit temporal dimension of video signal Prediction
 - Generic (MPEG-type) video coder architecture
- Current video compression standards
 - What are they?
 - What do the standards specify?
- Brief overview of H.264 / MPEG-4 AVC video coding standard

H.264 / MPEG-4 Part-10 Advanced Video Coding (AVC)

Jointly designed by ISO and ITU standards bodies

 Known by different names: H.264, MPEG-4 Part-10 Advanced Video Coding (AVC), Joint Video Team (JVT), etc.

Goals:

Video

Coding

- Significant improvement in compression
- Network friendliness from ground up:
 - Packet-based delivery
 - Carry over RTP/UDP/IP, MPEG-2 TS, H.324M, MPEG-4 file format, etc.
- Error & loss resilience
- Exact match decoding (e.g. integer transforms)
- Additional recent goals:
- Professional applications, e.g. > 8 bits per sample, 4:4:4 color sampling, ...

H.264 / MPEG-4 AVC: Enhancements over Prior Standards

Improved temporal prediction:

- Adaptive block-size MC-prediction (16x16 to 4x4 pixels)
- Multiple reference frames stored for possible use for prediction
- ¹/₄-pixel motion vector accuracy
- Deblocking filter within prediction loop Improved spatial prediction:
- Directional spatial prediction of pixels
- Integer DCT-like transform (4x4 pixel blocks)
 Improved entropy coding (probability prediction):
- Context-based adaptive binary arithmetic coder (CABAC)
 Enhanced features:
- Improved error-resilience techniques
- SP & SI switching pictures

H.264 / AVC Profiles & Levels

- Profile: Subset of tools applicable to specific application(s)
- H.264 version 1 defined 3 profiles:
 - Baseline (e.g., videoconferencing & wireless)
 - Main (e.g., broadcast, entertainment)
 - Extended (e.g., streaming) [Superset of Baseline]

Coding Tools	Baseline	Main	Extended
I & P slices	Х	Х	X
B slices		Х	X
Interlaced		Х	Х
CABAC		Х	
Error Resilience	Х		Х
More Error Resilience			X
SP & SI slices			X

- Levels specify constraints on maximum computation and memory
 - Pixels per second, coded bit rate, # reference frames


H.264 / MPEG-4 AVC Amendment 1: Fidelity Range Extensions (FRExt)

- Designed for professional applications which require higher quality in terms of bits/pixel, bit rates, spatial resolutions, etc.
- New "High" profiles:
 - High: Added 8x8 transform, improved quantization
 - High 10: Above plus support for 10 bits/pixel
 - High 4:2:2 : Above plus 4:2:2 format
 - High 4:4:4 : Above plus 4:4:4 format & 12 bits/pixel
- High profile likely for broadcast & entertainment quality apps
- High 4:2:2 for studio environments

Example Comparison: Results depend <u>strongly</u> on specific sequence & coding tools employed!

Comparison to MPEG-2, H.263, MPEG-4p2

Summary

- Overview of basic principles & practice of image and video coding, and key standards
- Video coding is critical enabler for many applications:
 - Digital TV
 - DVD
 - Video streaming
 - Wireless video, e.g. over 3G cellular networks
- Future of video coding:
 - Continued improvements in compression
 - New or improved functionalities
 - e.g. Scalable Video Coding (SVC) standard underway
 - Cross-layer design
 - e.g. Coding and packetization or transmission

Video Coding Additional Information

 "Video Streaming: Concepts, Algorithms, and Systems", HPL Tech Report HPL-2002-260

www.hpl.hp.com/techreports/2002/HPL-2002-260.html

 "Video Compression and Video Streaming", lectures at MIT 6.344, Spring 2004

www.mit.edu/~6.344/Spring2004/Spring2004.html

 "Enterprise Streaming: Different Challenges from Internet Streaming", HPL Tech Report HPL-2005-98

www.hpl.hp.com/techreports/2005/HPL-2005-98.html

