
© Copyright Khronos Group 2017 - Page 1

Standards for
Vision Processing

and Neural Networks

Radhakrishna Giduthuri, AMD
radha.giduthuri@ieee.org

© Copyright Khronos Group 2017 - Page 2

Agenda
• Why we need a standard?

• Khronos NNEF

• Khronos OpenVX

dog

Network
Architecture

Pre-trained
Network Model
(weights, …)

© Copyright Khronos Group 2017 - Page 3

Neural Network End-to-End Workflow

Desktop and Cloud Hardware

cuDNN MIOpen MKL-DNN

Embedded/Mobile
Vision/Inferencing Hardware

Embedded/Mobile
Vision/Inferencing Hardware

Embedded/Mobile
Vision/Inferencing Hardware

Embedded/Mobile/Desktop/Cloud
Vision/Inferencing Hardware

FPGA

CPUDSPGPU

Custom

Neural Network
Training Frameworks

Datasets

Network
Architecture

Third
Party
Tools

Trained
Network

Model

Vision and Neural Network
Inferencing Runtime

Vision/AI
Applications

© Copyright Khronos Group 2017 - Page 4

Problem: Neural Network Fragmentation

NN Authoring Framework 1

NN Authoring Framework 2

NN Authoring Framework 3

Inference Engine 1

Inference Engine 2

Inference Engine 3
Every Tool Needs an Exporter to

Every Accelerator

Neural Network Training and Inferencing Fragmentation

Vision/AI
Application

Hardware 1

Hardware 2

Hardware 3
Every Application Needs know
about Every Accelerator API

Neural Network Inferencing Fragmentation toll on Applications

Inference Engine 1

Inference Engine 2

Inference Engine 3

© Copyright Khronos Group 2017 - Page 5

Khronos APIs Connect Software to Silicon

Software

Silicon

Khronos is an International Industry Consortium of over 100 companies creating
royalty-free, open standard APIs to enable software to access hardware acceleration for

3D graphics, Virtual and Augmented Reality, Parallel Computing,
Vision Processing and Neural Networks

© Copyright Khronos Group 2017 - Page 6

NNEF - Solving Neural Network Fragmentation

NN Authoring Framework 1

NN Authoring Framework 2

NN Authoring Framework 3

Inference Engine 1

Inference Engine 2

Inference Engine 3
Every Tool Needs an Exporter to

Every Accelerator

Before NNEF – NN Training and Inferencing Fragmentation

NNEF is a Cross-vendor Neural Net file format
Encapsulates network formal semantics, structure, data formats,

commonly-used operations (such as convolution, pooling, normalization, etc.)

With NNEF- NN Training and Inferencing Interoperability

NN Authoring Framework 1

NN Authoring Framework 2

NN Authoring Framework 3

Inference Engine 1

Inference Engine 2

Inference Engine 3

Optimization and processing tools

© Copyright Khronos Group 2017 - Page 7

OpenVX - Solving Inferencing Fragmentation

OpenVX is an open, royalty-free standard for cross platform
acceleration of computer vision and neural network applications.

Vision/AI
Application

Hardware 1

Hardware 2

Hardware 3
Every Application Needs know
about Every Accelerator API

Before OpenVX – Vision and NN Inferencing Fragmentation

Inference Engine 1

Inference Engine 2

Inference Engine 3

With OpenVX – Vision and NN Inferencing Interoperability

Vision/AI
Application

Hardware 1

Hardware 2

Hardware 3

Inference Engine 1

Inference Engine 2

Inference Engine 3

© Copyright Khronos Group 2017 - Page 8

Neural Net Workflow with Khronos Standards

Desktop and Cloud Hardware

cuDNN MIOpen MKL-DNN

Embedded/Mobile
Vision/Inferencing Hardware

Embedded/Mobile
Vision/Inferencing Hardware

Embedded/Mobile
Vision/Inferencing Hardware

Embedded/Mobile/Desktop/Cloud
Vision/Inferencing Hardware

FPGA

CPUDSPGPU

Custom

Neural Network
Training Frameworks

Datasets

Network
Architecture

Third
Party
Tools

Trained
Network

Model

Vision and Neural Network
Inferencing Runtime

Vision/AI
Applications

© Copyright Khronos Group 2017 - Page 9

Application Development Workflow

Trained
Format

Third
Party
Tools

Training
Framework

Graph
Compiler

Vendor
Format

Inference
Engine

Structure only
OR

Structure plus weights
(quantized or not)

Structure plus weights
(quantized or not).
Can be augmented
with private data

Vision/AI
Applications

© Copyright Khronos Group 2017 - Page 10

NNEF Status and Roadmap
• V1.0 is under development, industry comments are being sought now
- NNEF has formed an advisory panel, you are invited today to participate

• First version will focus on interface between framework and embedded inference engines
- But will allow training as secondary goal

• Support ‘First cut’ range of network types
- Field is moving very fast but we aim to keep up with developments

• NNEF Roadmap
- Track development of new network types
- Allow authoring and retraining (3rd party tools)
- Address a wider range of applications (outside vision apps)
- Increase the expressive power of the format

© Copyright Khronos Group 2017 - Page 11

Shared Email
list and

Repository

Khronos Advisory Panels

Working
Group

Advisory
Panel

Khronos Members
Any company can join

Membership Fee
Sign NDA and IP Framework

Khronos Advisors
Invited industry experts

$0 Cost
Sign NDA and IP Framework

Specification drafts and
invitations for

requirements and feedback

Requirements and
feedback on

specification drafts

Hosted by Khronos.
Under Khronos NDA

Advisory Panels Active for NNEF, Vulkan, and OpenCL/SYCL

© Copyright Khronos Group 2017 - Page 12

An open, royalty-free standard for cross platform acceleration
of computer vision and neural network applications.

© Copyright Khronos Group 2017 - Page 13

OpenVX
Po

w
er

 E
ff

ic
ie

nc
y

Computation Flexibility

Dedicated
Hardware

GPU
Compute

Multi-core
CPUX1

X10

X100

Vision
DSPs

Wide range of vision hardware architectures
OpenVX provides a high-level Graph-based abstraction

->
Enables Graph-level optimizations!

Can be implemented on almost any hardware or processor!
->

Portable, Efficient Vision Processing!

Vision
Node

Vision
Node

Vision
NodeCNN

Nodes

Vision Processing Graph

GPU

Vision Engines

Middleware

Applications

DSP
Hardware

Software
Portability

© Copyright Khronos Group 2017 - Page 14© Copyright Khronos Group 2017 - Page 14

OpenVX - Graph-Level Abstraction
• OpenVX developers express a graph of image operations (‘Nodes’)
- Using a C API

• Nodes can be executed on any hardware or processor coded in any language
- Implementers can optimize under the high-level graph abstraction

• Graphs are the key to run-time power and performance optimizations
- E.g. Node fusion, tiled graph processing for cache efficiency etc.

Array of
Keypoints

YUV
Frame

Gray
Frame

Camera
Input

Rendering
Output

Pyrt

Color
Conversion

Channel
Extract

Optical
Flow

Harris
Track

Image
Pyramid

RGB
Frame

Array of
FeaturesFtrt-1OpenVX Graph

OpenVX Nodes

Feature Extraction Example Graph

© Copyright Khronos Group 2017 - Page 15

OpenVX Efficiency through Graphs..

Reuse
pre-allocated
memory for

multiple
intermediate data

Memory
Management

Less allocation overhead,
more memory for
other applications

Replace a sub-
graph with a

single faster node

Kernel
Fusion

Better memory
locality, less kernel
launch overhead

Split the graph
execution across

the whole
system: CPU /

GPU / dedicated
HW

Graph
Scheduling

Faster execution
or lower power
consumption

Execute a sub-
graph at tile
granularity

instead of image
granularity

Data
Tiling

Better use of
data cache and
local memory

© Copyright Khronos Group 2017 - Page 16

Simple Edge Detector in OpenVX
vx_graph g = vxCreateGraph();

vx_image input = vxCreateImage(1920, 1080);

vx_image output = vxCreateImage(1920, 1080);

vx_image horiz = vxCreateVirtualImage(g);

vx_image vert = vxCreateVirtualImage(g);
vx_image mag = vxCreateVirtualImage(g);

vxSobel3x3Node(g, input, horiz, vert);

vxMagnitudeNode(g, horiz, vert, mag);

vxThresholdNode(g, mag, THRESH, output);

status = vxVerifyGraph(g);

status = vxProcessGraph(g); m
h

i
v

oS M T

Compile the Graph
Execute the Graph

Declare Input and Output Images

Declare Intermediate Images

Construct the Graph topology

© Copyright Khronos Group 2017 - Page 17

OpenVX Evolution

OpenVX 1.0
Spec released October 2014

Conformant
Implementations

OpenVX 1.1
Spec released May 2016

Conformant
Implementations

AMD OpenVX Tools
- Open source, highly optimized
for x86 CPU and OpenCL for GPU

- “Graph Optimizer” looks at
entire processing pipeline and

removes, replaces, merges
functions to improve performance

and bandwidth
- Scripting for rapid prototyping,

without re-compiling, at
production performance levels
http://gpuopen.com/compute-product/amd-openvx/

New Functionality
Expanded Nodes Functionality
Enhanced Graph Framework

OpenVX 1.2
Spec released May 2017

New Functionality
Conditional node execution

Feature detection
Classification operators

Expanded imaging operations

Extensions
Neural Network Acceleration

Graph Save and Restore
16-bit image operation

Safety Critical
OpenVX 1.1 SC for

safety-certifiable systems

OpenVX
Roadmap

New Functionality
Under Discussion

NNEF Import

Programmable user
kernels with

accelerator offload

Streaming/pipelining

© Copyright Khronos Group 2017 - Page 18

AMD’s open-source implementation
• Highly-optimized for x86 CPU and OpenCL GPU

• Available on github.com
http://github.com/GPUOpen-ProfessionalCompute-Libraries/amdovx-modules

• Additional modules
• LOOM: highly optimized library for real-time 360 degree video stitching

• NN: neural network module built on top MIOpen (OpenCL-based machine learning primitives)
Includes a tool to import pre-trained Caffe models into NN

(develop branch)

…

© Copyright Khronos Group 2017 - Page 19

New OpenVX 1.2 Functions
• Feature detection: find features useful for object detection and recognition
- Histogram of gradients – HOG • Template matching
- Local binary patterns – LBP • Line finding

• Classification: detect and recognize objects in an image based on a set of features
- Import a classifier model trained offline
- Classify objects based on a set of input features

• Image Processing: transform an image
- Generalized nonlinear filter: Dilate, erode, median with arbitrary kernel shapes
- Non maximum suppression: Find local maximum values in an image
- Edge-preserving noise reduction

• Conditional execution & node predication
- Selectively execute portions of a graph based on a true/false predicate

• Many, many minor improvements
• New Extensions
- Import/export: compile a graph; save and run later
- 16-bit support: signed 16-bit image data
- Neural networks: Layers are represented as OpenVX nodes

B C

S

A Condition

If A then S ← B else S ← C

© Copyright Khronos Group 2017 - Page 20© Copyright Khronos Group 2017 - Page 20

OpenVX 1.2 and Neural Net Extension
• Convolution Neural Network topologies can be represented as OpenVX graphs
- Layers are represented as OpenVX nodes
- Layers connected by multi-dimensional tensors objects
- Layer types include convolution, activation, pooling, fully-connected, soft-max
- CNN nodes can be mixed with traditional vision nodes

• Import/Export Extension
- Efficient handling of network Weights/Biases or complete networks

• OpenVX will be able to import NNEF files into OpenVX Neural Nets

Vision
Node

Vision
Node

Vision
Node

Downstream
Application
Processing

Native
Camera
Control CNN Nodes

An OpenVX graph mixing CNN nodes
with traditional vision nodes

© Copyright Khronos Group 2017 - Page 21

OpenVX Neural Network Extension
• Two main parts: (1) a tensor object and (2) a set of CNN layer nodes
• A vx_tensor is a multi-dimensional array that supports at least 4 dimensions

• Tensor creation and deletion functions
• Simple math for tensors
- Element-wise Add, Subtract, Multiply, TableLookup, and Bit-depth conversion
- Transposition of dimensions and generalized matrix multiplication
- vxCopyTensorPatch, vxQueryTensor (#dims, dims, element type, Q)

© Copyright Khronos Group 2017 - Page 22© Copyright Khronos Group 2017 - Page 22

OpenVX Neural Network Extension
• Tensor types of INT16, INT7.8, INT8, and U8 are supported
- Other types may be supported by a vendor

• Conformance tests will be up to some “tolerance” in precision
- To allow for optimizations, e.g., weight compression

• Eight neural network “layer” nodes:

vxActivationLayer vxConvolutionLayer vxDeconvolutionLayer

vxFullyConnectedLayer vxNormalizationLayer vxPoolingLayer

vxSoftmaxLayer vxROIPoolingLayer …

© Copyright Khronos Group 2017 - Page 23

Safety Critical APIs

New Generation APIs for safety
certifiable vision, graphics and

compute
e.g. ISO 26262 and DO-178B/C

OpenGL ES 1.0 - 2003
Fixed function graphics

OpenGL ES 2.0 - 2007
Shader programmable pipeline

OpenGL SC 1.0 - 2005
Fixed function graphics subset

OpenGL SC 2.0 - April 2016
Shader programmable pipeline subset

Experience and Guidelines

OpenCL SC TSG Formed
Working on OpenCL SC 1.2

Eliminate Undefined Behavior
Eliminate Callback Functions
Static Pool of Event Objects

OpenVX SC 1.1 Released 1st May 2017
Restricted “deployment” implementation

executes on the target hardware by reading the
binary format and executing the pre-compiled

graphs

Khronos SCAP
‘Safety Critical Advisory Panel’

Guidelines for designing APIs that ease
system certification.

Open to Khronos member AND
industry experts

© Copyright Khronos Group 2017 - Page 24© Copyright Khronos Group 2017 - Page 24

OpenVX SC - Safety Critical Vision Processing
• OpenVX 1.1 - based on OpenVX 1.1 main specification
- Enhanced determinism
- Specification identifies and numbers requirements

• MISRA C clean per KlocWorks v10
• Divides functionality into “development” and “deployment” feature sets
- Adds requirement to support import/export extension

OpenVX SC
Development Feature

Set (Create Graph)

OpenVX SC
Deployment Feature Set

(Execute Graph)

Binary
format

Verify

Export

Import

Entire graph creation API No graph creation APIImplementation
dependent format

© Copyright Khronos Group 2017 - Page 25

How OpenVX Compares to Alternatives

Governance Open standard API designed to be
implemented and shipped by IHVs

Community-driven,
open source library

Open standard API designed to be
implemented and shipped by IHVs

Programming
Model

Graph defined with C API and then
compiled for run-time execution

Immediate runtime function calls –
reading to and from memory

Explicit kernels are compiled and
executed via run-time API

Built-in Vision
Functionality

Small but growing
set of popular functions

Vast.
Mainly on PC/CPU

None. User programs their own or
call vision library over OpenCL

Target
Hardware

Any combination of processors or
non-programmable hardware Mainly PCs and GPUs Any heterogeneous combination of

IEEE FP-capable processors

Optimization
Opportunities

Pre-declared graph enables
significant optimizations

Each function reads/writes memory.
Power performance inefficient

Any execution topology can be
explicitly programmed

Conformance Implementations must pass
conformance to use trademark

Extensive Test Suite but
no formal Adopters program

Implementations must pass
conformance to use trademark

Consistency All core functions must be available
in conformant implementations

Available functions vary depending on
implementation / platform

All core functions must be available
in all conformant implementations

© Copyright Khronos Group 2017 - Page 26

OpenVX Benefits and Resources
• Faster development of efficient and portable vision applications
- Developers are protected from hardware complexities
- No platform-specific performance optimizations needed

• Graph description enables significant automatic optimizations
- Scheduling, memory management, kernel fusion, and tiling

• Performance portability to diverse hardware
- Hardware agility for different use case requirements
- Application software investment is protected as hardware evolves

• OpenVX Resources
- OpenVX Overview
- https://www.khronos.org/openvx

- OpenVX Specifications: current, previous, and extensions
- https://www.khronos.org/registry/OpenVX

- OpenVX Resources: implementations, tutorials, reference guides, etc.
- https://www.khronos.org/openvx/resources

© Copyright Khronos Group 2017 - Page 27

Dedicated Vision
Hardware

Layered Vision/ Neural Net Ecosystem

Programmable Vision
Processors

Application

Implementers may use OpenCL or Vulkan to implement
OpenVX nodes on programmable processors

And then implementors can use OpenVX to enable a
developer to easily connect those nodes into a graph

The OpenVX graph abstraction enables implementers to optimize execution
across diverse hardware architectures for optimal power and performance

OpenVX enables the graph to be extended to include hardware
architectures that don’t support programmable APIs

Vulkan Roadmap
Enhanced compute – especially

useful for vision and inferencing
on mobile and Android platforms

OpenCL Roadmap
Flexible precision for

widespread deployment on low-
cost embedded processors

© Copyright Khronos Group 2017 - Page 28

• Khronos working on a comprehensive set of solutions for vision and inferencing
- Layered ecosystem that include multiple developer and deployment options

• These slides and further information on all these standards at Khronos
- www.khronos.org

• Please let us know if we can help you participate in any Khronos activities!
- You are very welcome – and we appreciate your input!

• Please contact us with any comments or questions!
- Radhakrishna Giduthuri | radha.giduthuri@ieee.org

Any Questions?

