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The Camera – past and present
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Modern camera evolution

Current consumer camera

Some “computational” features can be added w/o HW 

modifications (e.g., HDR, video super-resolution, 

generating panoramas)

The theoretical plenoptic camera captures all 

information at a point in space 
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Practical, lower-dimensionality computational camera instantiations

Raytrix R11

Lytro

Lytro Illum Pelican Imaging
Stanford Array
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R&D scope for computational imaging 

 Plenoptic image acquisition 
 Camera design, calibration, syncronization

 Space/time sampling, optimal sampling (aliasing?)

 Typically, huge amount of data are generated 

 Plenoptic processing 
 Reconstruction of imaged scene data, plenoptic representations for specific 

purposes, feature generation and associated apps (e.g., depth map and usage)

 Coding (for storage, transmission, display)

 Formats

 Plenoptic signal communication 
 Transport issues (e.g., error resilience) specific to this domain 

 Bandwidth!

 Rendering/displays, printing
 Display devices (to take advantage of new imaging capability) 

 3D printing

4© Pelican Imaging 2014. All rights reserved. 



Outline

 The plenoptic function

 Computational cameras as codecs 

 The Pelican Imaging array camera
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The plenoptic function and its 

parameterizations
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The plenoptic function

 The plenoptic function was introduced formally in [Adelson 1991]. 
 Describes all light information collected at a point in space-time 

 The plenoptic function is originally a 7D function, 

where 

- viewpoint coords. 
- ray direction 

- wavelength 

- time 

 By fixing various parameters in the plenoptic function, one obtains 
more restrictive representations. 
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Of particular interest: 

4D Parameterization of Light Field

 Integral photography [Lippmann 1908]

 Light fields are 4D parameterizations of the plenoptic function 
 Light Fields [Levoy 1996] and Lumigraphs [Gortler 1996]: a ray is indexed by its 

intersection with two parallel planes. 

 Assumption of space free of occluders (to reduce from 5D to 4D); six pairs of 
planes surrounding the convex hull of the object being imaged 
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4D Light Field capture

9
[Levoy 1996] [Ng 2005]

 Spatio-angular capture, whether
 of the main lens image, using a microlens array (like a relay-lens system) near sensor
 of the scene, using lens arrays
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Brief overview of computational cameras*
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* Extensive literature available, this is a sparse sampling
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Computational camera as codecs

 Optics and/or camera structure (e.g., case of arrays) “encode” the 

imaged scene in various ways 

 Typically, the closely-adapted digital processing “decodes” the 

information to produce the desired features of the computational 

camera

 ( As usual, an image/video codec may be inserted between the two, 

esp. given the volume of data that may be generated).
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Computational camera codecs (contd.)

 Aspects of such devices can just as well be cast in the language of 
information theory 

 E.g., 
 what constitute “good” views of the scene? 

 Viewpoint entropy [Vasquez 2001], 

where is the number of facets of objects seen in the scene, 

is the projected area of face i over the sphere centered at viewpoint

is the total area of the sphere

 how “efficient” is the information transfer across acquisition & processing

 efficient source coding of generated data, e.g., MPEG-4 Part10 predictive 
Multiple View Coding (MVC), or “just-in-time” (JIT)-decode representations (e.g., 
[Lelescu 2004]) 
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The “encoding” of acquisition: Approaches [1]

 Object Side Coding

 Involves an optical element attached to a conventional lens

 Examples include:

• Catadioptric Lenses (Lens + mirrors) [Chahl 1997, Baker 1999, Lelescu 2002]

• Bi-prism Stereo [Lee 1998]

 Pupil Side Coding

 Involves an optical element attached to the pupil plane of conventional lens

 Examples include:

• Cubic Phase Plates [Dowski 1995]

• Coded Aperture [Levin 2007]
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The “encoding” of acquisition: Approaches [2]

 Focal Plane Coding

 Involves an optical element placed close to the sensor/detector

 Examples include:

• Pixel-wise control of exposure [Nayar 2003]

• Use of microlens arrays [Adelson 1992], [Ng 2005], [Lumsdaine 2009], [Georgiev 2010], 

• Attenuation masks [Veeraraghavan 2007]

 Illumination Coding

 Spatial or temporal control of flash to code captured images

 Examples include:

• Robust 3D using space-time stereo [Zhang 2003]

• High speed 3D reconstruction using structured light, e.g., [Gong 2010]

• Kinect [Microsoft]
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The “encoding” of acquisition: Approaches [3] 

 Camera clusters and arrays

 No optical coding need be involved, but “coding” occurs due to 
information capture across individual cameras
 Additional coding may involve high-frequency scene information captured in 

phase-offset aliased array images

 Examples include:
 Multi-baseline stereo [Okutomi 1993]

 TOMBO array [Tanida 2001]

 Flexible Camera Arrays [Nomura 2007]

 Stanford Camera Array [Wilburn 2005]

 Pelican Imaging Camera Array [Venkataraman 2008]
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The encoding of acquisition:

A few category examples
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 E.g., 

 Bi-prism stereo [Lee 1998]

 Catadioptric omnidirectional capture and processing [Lelescu 2002] 

Object Side Coding

ParaMax Reality 360
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 Extended depth of field (EDOF) through wavefront coding, e.g., [Dowski

1995] 

 A standard optics is modified by a phase mask

 The phase mask alters the wavefront such that point-spread function does not change

appreciably

 Phase-mask optics “coupled” with a deconvolution process enable a large-

DoF image recovery , since the blur kernel is largely invariant with 

distance, e.g., on-sensor EDOF solution [Lelescu 2009].

Pupil Side Coding 
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 Patterned occluder within the aperture 

of the camera 

 Creates a coded aperture

 The aperture filter can now discriminate

between depths

 Recover the scale of the blur which 

allows one to 

 Determine the depth (since the scale of the 

blur is dependent on depth)

 Recover the image by inverting the blur at 

each depth level

Pupil Side Coding [Levin 2007]
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Focal Plane Coding [Adelson 1992]

FIGURE 2. In a plenoptic camera, an array of 
microlenses is used to sample the angular 
information of light rays. When the object is out-of-
focus point, a blurred spot is formed on the 
microlens array, but depending on the incident 
angle of the light, different pixels will be 
illuminated.

FIGURE 1. In a conventional camera, only a 2-D 
image is captured at the sensor plane. Because of 
this, it is impossible to tell whether the point being 
imaged is further from or nearer to the image 
plane

 By placing a lenticular array close to the sensor plane of the main lens, the 
resulting ‘plenoptic’ camera provides depth cues 
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 Spatio-angular sampling using a microlens array: 

Plenoptic camera [Ng 2005]; Focused plenoptic

camera [Lumsdaine 2009], [Georgiev 2010]

 Differences in focusing the main lens image and 

the microlenses  differences in reconstruction 

and render resolution

 For example, in plenoptic camera [Ng 2005] 

 Image: integrate within microlens sub-images 

 Refocusing the image:

Focal Plane Coding (contd.)

21

[Ng 2005]

[Georgiev 2010]
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 A Gantry (or Dome) is built to house 

cameras at different points of view

 The cameras capture multiple points of 

view

 Synthesize intermediate views from 

positions on the gantry, or from points 

inside the convex hull of the gantry

Camera clusters –

Virtualized Reality [Rander 1997]
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PI Computational Array Camera (PiCam)

23

Venkataraman, K., Lelescu, D., Duparré, J., McMahon, A., Molina, G., Chatterjee, P., 
Mullis, R., Nayar, S. (2008). PiCam: an ultra-thin high performance monolithic camera 
array. In ACM Trans. Graph. 32(6):166.
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What can an array camera do? 

 Features

– Small form factor (very thin, e.g., 3.5mm) computational camera

– Restore higher resolution imagery from low-resolution input – super-resolution 

(SR) – a balanced angular vs. spatial resolution (in 4D)

– Virtual viewpoint (whether native res., or further super-resolved)

– Dynamic focus; post-capture refocus/synthetic aperture; re-lighting, etc.

– Natively co-located (RGBZ) depth map

• Consumer depth-driven applications, depending on design

– Video from an LF camera, can use depth features for applications

 The balancing of strengths in the multi-feature “star-graph” is part of 

design constraints. Some trade-offs have to be made (no free lunch)

 Camera instantiations can be built, with different combination of 

features and trade-offs. 
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Building computational cameras: stepping stones

 Computational camera design typically more complex than 
traditional camera

 Level 1: proof of concept design/simulations, more limited, 
controlled-condition testing 

 Level 2: physical emulation or build, and more extensive testing, but 
not “consumer-grade”, e.g., 
 small number of cameras built, may use manual or per-image/class tuning

 manufacturing tolerances

 Level 3: full-fledged camera module, meant for field operation, e.g.,
 large numbers of cameras built, extensive testing

 robustness is paramount, manufacturing tolerances

 stable adaptive tuning to practically uncontrolled imaging conditions

 (self-diagnosis/correction in the field) 
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Building computational cameras (contd.)

 New HW challenges for an array camera, e.g.,

 Performance and tolerances of components

 New composite metrics, and tolerances for the array

 Alignment techniques

 Critical to design jointly the Encoder (acquisition HW) and Decoder 

(digital processing)

 Approach/algorithms/assumptions that will function within design constraints, and 

achieve desired functionality

 Develop solutions from classes of advanced statistical signal processing 

approaches (esp. able to account for modeling/characterization uncertainties)  
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What does the array camera “encode”? 

 Geometry and intensity information in 4D (u,v,s,t):

 Depth information (disparity, in image space)

 Decode: Geometric registration and parallax detection

 High frequency information above sensor Nyquist (if so designed) in the 

form of phase-offset aliased input data   super-resolution decoding 

 Can be used (even at varying strength) to complement other features, e.g., 

refocus, virtual view, etc.

 Dynamic range information (exposure bracketing in array) 

 For “single shot” HDR

 Decode: HDR reconstruction
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Sample considerations for PiCam design 

 PiCam HW (“encoder”): Optics, sensors (and module integration)

 PiCam SW (“decoder”) Core processing

 Parallax detection 

 Super-resolution

 PiCam SW applications
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Encoder: Camera module structure
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Encoder: Sample design considerations:Optics

30

 Each channel can be designed for a narrower spectral band 

 Small bandwidth – less achromatization needed, or better performance 

with the same effort

 Separated color channels – each channel can be focused properly

 Small optical format reduces aberrations and influence of form errors 

CFA
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Example: monolithic lens array
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Encoder: Sensor Design

 In the case of a Bayer-pattern, the CFA is deposited on the pixels. 

 Once each focal plane is monochrome the filter can be moved from 
sensor to the lens ! 

 Benefits:
 Cheaper lithography & material

 Reduced pixel stack height  increased pixel MTF (less crosstalk)
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Decoder: High-level core- and derived- functions
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Virtual 
Viewpoint

Refocus, 
Relighting

.

.

.

Co-located 
Depth

Geometric
Photometric
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“Decoding” depth: 

Parallax detection & regularization

 First level: joint (multi-camera) parallax detection, multi-channel 
(e.g., RGB)
 Spatial arrangement of Color Filters (cameras) very important 

(occlusion handling)

 Second level: refinement through a “visibility processing” reasoning 
 Basically, verify validity of initial result by testing the obtained geometry against 

array constraints

 Saves more geometry {u,v,s,t} information for the subsequent 
“uncertainty processing” (or hypothesis testing) in the MAP 
reconstruction

 For certain applications, a further depth –map regularization may be 
performed to fill in missing data. 
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Example: Depth map (w/ confidence map) 
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Decoding: Recovering resolution
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 The resolution is a function of multiple parameters, including

 Optical Format of each camera in array

 Number and arrangement of cameras

 F/# (determines diffraction limit), aberrations, and resulting OTF of optics

 Pixel size (sampling rate, aliasing)

 Sensor MTF

 Super resolution factor
SystemMTF = OpticsOTF x SensorMTF

Array component 
camera MTF.
Exploit aliasing to SR 
recover.

Ny 2Ny 3NyNy

Traditional camera MTF, 
aliasing is undesired 
(OLPF used)
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Image reconstruction: modeling, and uncertainties
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 Important to model, characterize, or determine “degradations”:
 multiple blurs (e.g., optics, sensor)
 geometry (e.g., scene-independent distortions, scene-dependent parallax)
 Noise (both imaging, and impact of cumulative estimator noise)

 Trust (to some degree) but verify:
 The processing design starts with built-in assumption of uncertainties 

most appropriate statistical models adopted  toward robust functionalities 

recover

??
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Decoding: Super-resolution reconstruction

 Leverage Bayesian philosophy 
 No “turn-key” solution; needs dedicated derivations

 Probabilistic models incorporate general, and system-specific priors
 Optics characteristics – e.g., PSFs, geometry

 Sensor – e.g., MTF, Noise

 Array geometry

 A MAP (maximum a-posteriori) restoration approach provides a 
powerful unified framework for processing
 Addresses uncertainty from prior stages (e.g., parallax, normalization)

 Stabilizes solution

 Cross-channel fusion of Red/Blue channels, along with 
selective transfer of weighted MAP-gradients from Green
 Could optimally be done “inside the loop”, but more expensive
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“Decoder”: The Super-resolution reconstruction (contd.)
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“Decoder”: Reconstruction animation

✔

✔ ✔ ✔

✔ ✔

✔ ✔

✔

✔

✔

✔
Initial Fusion 1 GreenInitial Fusion 4 Greens
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Initial Fusion 8 GreensInitial Estimate 8 GreensMAP – 8 GreensCOLOR RECONSTRUCTED



PiCam: More examples and applications
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Reconstruction
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Reconstruction

Single subarray low-res 

image

Super resolved 

image 45© Pelican Imaging 2014. All rights reserved. 



Reconstruction (indoor, higher noise)
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Reconstruction (far)

48
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Reconstruction, DoF/resolution comparison 
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Input Image Regularized Depth

Depth map + regularization (outdoor depth)
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Applications: Refocus

51
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Applications: Re-Lighting
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Applications: Point clouds (capture at 10-15cm)
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Future applications: Close object scan
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Summary

 Computational cameras

 Can provide set of unique/interesting/useful features

 Ongoing efforts to bring them to consumer

 Array camera

 Core functionalities:

 Provides depth

 Higher-resolution than that of individual component camera

 Form factor adapted to application domain (including very thin, 

mobile form-factor camera)

 With higher computational budgets, more (or increased quality) 

features could be offered in an even small form factor.
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More information at

www.pelicanimaging.com

Thank you
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