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Brief Introduction and Research Interests
* From 2G to 6G and beyond
* SATCOM and localization for the defense industry

* Digital signal processing for wireless communications
* Radio frequency machine learning

* Complex-valued and Hyper-complex Neural Networks
* Electromagnetic signal information theory

* Ultra-reliable low-latency communications _ Virginia
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Current State of Wireless Technologies

Artificial intelligence

Joint communications and sensing and machine leaming
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Multiple access, Ultra-massive MIMO
new waveforms, channel coding

New network topologies,
distributed computing

Reconfigurable
intelligent surfaces
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Full-duplex
communications

[1] Rhode & Schwartz, “Ten key enablers for 6G wireless communications”, 2023

Photonics,
visible light communications
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Outline

* State of the Art, Motivation and Background

* Paradigm Shifts

* Software-Defined Environment for Wireless Networks
* Metasurfaces and Reconfigurable Intelligent Surfaces
* Operation Modes and Use Cases

* Conclusions and Outlook

* References
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State of the Art
#* MIMO and Massive MIMO is used in 5G MaSS|Ve M”\/IO

% Enables mobile real-time video

% Utilizes the spatial domain for additional degrees of freedom-over l&lH“
frequency only systems :

% Leveraging a rich multi-path environment

% Capacity improvement over MIMO
— Mutual coupling limited

— Logarithmic Marzetta Bound

* Supports the Multi-User case

5

— Interleaving data streams

* Many antenna elements enables beam-forming

— Improve coverage and reduce transmit power

Figure: https://5g.co.uk/guides/what-is-massive-mimo-technology/
[2] T. L. Marzetta, "Fundamental limitations on the capacity of wireless links that use polarimetric antenna arrays," Proceedings IEEE Wireless :.--\j"':-;_i_;:;.Vlrgmla
International Symposium on Information Theory,, Lausanne, Switzerland, 2002, p. 51. Tech
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State of the Art and Issues

* High Performance: %

— MIMO exploits rich scattering multipath

— Massive MIMO beam-forming to user

Interference

* 64 or more antenna elements

()

* Problems:

- mmWave/sub-THz poor propagation ‘
— Ground reflections loss ~ d*

Rich Scattering

— Potential of blockage

Malicious

— |nterference

Eavesdropper Wireless @ Vienia
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Solutions using RIS
* The classic RIS solution (((((EG))))
— Place RIS to reflect wave towards user é’

* Artificial multipath

— Place RIS to enhance multipath

* |nterference cancellation

) |

— Utilize RIS to cancel interference

* Obfuscate the eavesdropper

S

Rich Scattering

— Direct wave away from eavesdropper

Reflection

— Jam the eavesdropper with reflections

Multitude of other scenarios Wireless @ Vienia
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Cost Motivation and Solution

* Problem: Baseband RF
Contemporary communications systems MIMO Precoder Precoder
and massive MIMO use very large antenna arrays s
—| RF Chain| =t
— Exploits the spatial domain for bit-rate/user i
— Requires Ngr radio-frequency chains ‘ !
— Prohibitive cost, power and complexity K| E, Ny :
* Solution: : : y ¢
— Reconfigurable Intelligent Surfaces — . : 'K
5 5 __| RF Chain N, rg—

gt AL,
— Neural networks for at decoding and de-noising szf—]—&—-b—r@/ﬁ

[3] P. Sabeti, A. Farhang, |. Macaluso, N. Marchetti and L. Doyle, "Blind Channel Estimation for Massive MIMO: A
Deep Learning Assisted Approach," IEEE International Conference on Communications, 2020, pp. 1-6. wireldté (1) Virginia

Tech
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A True Paradigm Shift: Software-Defined Environment

* Smart radio environment

A new concept and a true a paradigm shift
The channel environment itself can be
controlled and optimized

The communication system has a degree of
control of the channel environment

F

F

Controlled Radio Wave Propagation

PF

Channel (H . F q
9., Transmitter (Tx) . (H) Y .| Receiver (Rx) 19—
w/ RIS
[4] M. Di Renzo et al., "Smart Radio Environments Empowered by
Reconfigurable Intelligent Surfaces: How It Works, State of
Research, and The Road Ahead," in IEEE Journal on Selected S
— Virginia

Areas in Communications, vol. 38, no. 11, pp. 2450-2525, 2020. Wireless (1 Tech
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Characteristics of RIS Programmable Properties
* Individually tuned elements e - N
— Element spacing: A/5 to A/10
Linear gradient
% Tunable phase response >~ (anomalous reflection)

T

#* High spatial resolution
~Concentric gradient
(focusing)

b

Nearly-passive
— Low hardware cost

~ Low power consumption Angular gradient

Two Operation Modes 4 (vorticity)

Pk

— Programming the phases using FPGA or
Microcontroller Random pattern

~ Normal operation (diffuse scattering)

#* Full duplex v J

[5] S. Abadal et al., "Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and
Architectures," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 1, pp. 6-19, 2020.

Wireless (@ V"813,
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Tuning the Electromagnetic Properties

* Metasurface, artificial material
desired radiation
— Breakthrough in 2000s /
s —7
N
é_-_ - \I’ HH“*-\_

* Electromagnetic properties

— Permeability, 1., (Magnetization)
/ ~
— Permittivity, €., (El. Polarizability) e S\ surface currents

metasurface impedance surface

— Surface currents

— Induced electromagnetic fields I — Z 70 = LE|
A ~ |H|

— Reflection coefficient

[6] V. Liu et al., "Reconfigurable Intelligent Surfaces: Principles and Opportunities," e
in IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1546-1577, 2021. Wireless (@ ' Tech
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Reconfigurable Intelligent Surfaces — RIS Element Filter
#* Tuning impedance, Z_, of the lumped circuit controlling each unit cell F L Zn<v>—Zo
depends on the bias voltage — |7 (V)—|—Zo
n
% The coefficient depends on self and mutual impedance
. , Zo = 376.73 (2
% Amplitude and phase are not completely |ndepen1d0ent from each other
[=))
o © 08}
S, g0 c
% % 0.6 — ] G
- & —— 16V
Q o = — 14V
V)] % 0.4 —_ 11V
2 = —7v
% -90 t_é'_ 02k —SE
® —
<
o -180 00F
5.2 5.5 5.8 6.1 6.4 5.2 5?5 578 6?1 6.4
Frequency [GHZ] Frequency [GHZ]
[7] X. Pei et al., "RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Wireldde :,--;';.:::\.::.Virgi%liah
!

Indoor/Outdoor Field Trials," in IEEE Transactions on Communications, vol. 69, no. 12, pp. 8627-8640, 2021.
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Anomalous Reflection and Refraction
* Traditional reflection of waves are specular v
* The Meta-Atom can produce anomalous reflections Meta-Atom

61 = 05

— Incident and reflected angles are different

Anomalous Reflection

* Refraction

— Anomalous Snell’s Law

Meta-Atom

* The reflection and refraction are programmable .

* That is, intelligent wireless (@ V"¥ie,
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* Wavefront shaping . _ _ _

| ~ Electromagnetic Manipulation/Operations
* Beam-forming and Focusing
% Anomalous Reflection, Refraction  reflection refraction absorption focusing
* Polarization \j \ \ W
* Absorption . | | A% |
* Splitting
* Frequency Shifting / Modulation g . : o

polarization sphtung analﬂg prnccssmg collimation
#* Diffuse scattering
J

* \orticity @@ \l/ [F* }
* Collimation
* Memory
[6] V. Liu et al., "Reconfigurable Intelligent Surfaces: Principles and Opportunities," Vu.glma

in IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1546-1577, 2021.

Wireless (¢ Tech
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N O m e ﬂ C | at u re Metamaterials Mebacirfica
Huygen's (MTS) :

* Metasurface, Shaped meta-atoms Surface Al

Reconfigurable
* R-MTS, Programmable MTS MTS (R-MTS)

. Programmable
* LIS, RIS, Software Defined Surface e i
ntelligent
- N x M Elements, Unit cells acte S . !

Intelligent , . Defined

— Element spacing: A/5 to A/10 Surface / Surface

(LIS) | (SDS)

— Varactors, PIN-diodes, RF-MEMS

* |RS, only reflective surface

Figure: John Hodge, Dissertation, Virginia Tech, November 2021. Wireless@VirgilTléﬂh
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Machine Learning for Metasurface Design

(i) Tx Mag (i) Tx Real/ (iii) Epoch (iv) Epoch ([v) Epoch (vi) Post-  (vii) Full-wave
(dB) Imag 1 1000 2500 Processed  Verification

3 s A e
» — L e

i -:'IF:"'::.'-.;.

A -0 > ViR
k. L

i T S

R 5

* Machine learning

* Convolutional Neural Networks

* Learn the shape of meta atom

* Barium Strontium Titanate (BST) , .8

Frequency  Frequency
(GHz) (GHz)

_ ——
[8] John Hodge, Dissertation, Virginia Tech, November 2021. W”’eless@ Hggrlel:ih
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Large Intelligent Surfaces
* Large Intelligent Surfaces (LIS)

— Close relative to RIS

: : . / SEEEEEEE (10
* LIS is next generation Massive MIMO AL L 05
\ S }% gba

: far feld el TR “

* Antenna array design i | s poie

near field multi-mode
\ LOS communication

* Active elements

and localization E
- RF chains and Power Amplifiers ""‘L’;iff! T
DDE- :
* Signal processing capabilities Q e ﬁf“‘]r“]ﬁ[_][_] -
= [_]J[_]L LIS far-field boundary

: ' CEDEDEDE

* Non-zero power consumption

[9] D. Dardari and N. Decarli, "Holographic Communication Using Intelligent ] Vu.glma
Surfaces," in IEEE Communications Magazine, vol. 59, no. 6, pp. 35-41, June 2021 irelegt ( Tech
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Reconfigurable Holographic Surfaces

% Mapping sighals to a holographic
pattern - P \

Desired
directional beams

LY

%« Reference wave in waveguide
* Radiation elements construct a

nolographic pattern ez 0
, r
x Qecords Interfe rence between Fccd/ Rtﬁ.rum wave propagates in the waveguide |
reference wave and the desired object L !
wave

. . ) Radiation element /
% Desired directional beams

* Holographic MIMO

[10] R. Deng, B. Di, H. Zhang and L. Song, "HDMA: Holographic-Pattern Division Multiple

~ Virginia
Access," in IEEE Journal on Selected Areas in Communications, vol. 40, no. 4, pp. 1317-1332,

Wireless (1 Tech
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RIS Realization Technologies and Performance

diodes conductive
<20 / / >20

Working
frequency (GHz <40 <110 <200

Working voltage High Medium High High Low Very high High
Power . : :
coraiitton Low Medium High Low Medium Low Low
Time to change
2 odaboolk s ns ns ns s ms ms
Insertion loss Low Medium High Medium Medium / High
Digital/analog D D A D D 2 A
control
Medium Low High Medium / High /

[11] ETSI ISG RIS GR002 / Rhode & Schwartz, “RIS — shaping the radio channel for best connectivity”, March 2023. Wireless:',f%ff:"_:-.:j__f.f-Virgi%‘éﬁc‘h
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RIS Example From MIT

* MIT’s RFocus prototype

* Six square meters
* 3720 antenna elements
* 10 times signal strength

* Double the channel capacity

Photo: Jason Dorfman, CSAIL

Wireless @ Vlrgl%éih



VIRGINIA
TECH.

Metasurface Example From DOCOMO and AGC Inc.

* Metasurface lens
* Enhance radio signal reception

* Efficiently guides mmWaves

— Targets indoor locations

* Guides 28-GHz 5G radio signals

Dynamic

[12] NTT DOCOMO Inc. and AGC Inc., January 2021. Wireless@“rgi.rr‘éih
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Commercial RIS

* DOCOMO World's first successful transparent dynamic

m eta S u rfa Ce trans:;?::\?:;ami:
Conventional metasurface metasurface
— Transparent meta-surface on glass i & & & &
_ . o
Three modes: | SEEE D
+ Full penetration FE B B R

Approx. 2mm

+ Partial reflection
+ Full reflection

* e2ip, 5G Smart Surfaces EES Indoor Demo, July 2023

* Pjvotal Commware, Holographic Beam Forming Technology

[13] NTT DOCOMO, January 2020. Wireless (@ ¥ "8,
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RIS Towards Standardization

* |EEE ComSoc special interest groups and committees on RIS
— RISE, RIS for smart radio environments
— RISETI, Emerging Technology Initiative

— Signal Processing and Computing for Communications Technical Committee

* ETSI Reports
— ETSI GR RIS-001, April 2023
— ETSI GR RIS-003, June 2023:
* Defining RIS as a key wireless technology candidate for the future

* RISTA, RIS Tech Alliance, RIS Technology White Paper, March 2023
* 3GPP, Considered RIS for 5G-Advanced, a bridge between 5G and 6G Wireless (@ V"8,
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RIS Assisted Cell Edge Users

* Cell-edge users suffer from

— High signal attenuation from the
serving cell

— Severe co-channel interference from
neighbor cells

* Deploy a RIS at the cell edge to

— Improve the desired signal power

— Suppress the interference

BS1 @ BS 2

Figure: unknown source Wireless (@D Vireinia,
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Joint Transmit and Passive Beamforming Design

RIS
controller

T

* RIS assisted links

* LOS + RIS waveform
RIS
* |ncreased received power @DD)
* Power ~ N?
— Number of elements, N BS &

Direct link @ User m
Reflect link ket

[6] Liu, Yuanwei, et al. “Reconfigurable Intelligent Surfaces: Principles and _ — Virginia

Opportunities.” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, 2021. Wireless (U | = Tech
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Transmitter

Malicious Detection

r'-

* Adversary attempts eaves dropping

* Signal detection his first step v

RIS

controller Undesired

* Project coherent multipath L dife?fﬂ”

L s > Receiver
o _ . UL adversarial
* Signal detection problematic node
* Adversary’s attempt obfuscated

Direction-Finding LLJ_I

[14] A. M. Buvarp, D. J. Jakubisin, W. C. Headley and J. H. Reed, "Probability-Reduction of MUSIC Algorithm Node
Geolocation using Reconfigurable Intelligent Surface Reflections," IEEE Wireless
Communications and Networking Conference, 2023, pp. 1-6.

Figure Enhancement: Dr. Daniel Jakubisin

using ULA and the B Adversaria

Wireless (cD Vlrgl?gclh
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Probability of Detection vs SNR

Probability of Detection

1 = I I e .
f/ ————— Strongest Peak
0.9 f, Two Strongest Peaks
. . . ff — — — Three Strongest Peaks
* RIS-induced multipath o5 ¢ / |—— Any Peak |
N ‘ c 0.7 J
* Uncorrelated signal - i e W[
206 /
. @
— Modest obfuscation 0 .
(= b .'I'
£ ]
e » = 04 i e o
* Correlated signals 5 7 BT e e
O Y
o 0.3 - 1 % -
—_ . !'_'IL: fs -f
Severe obfuscation m [/ Correlated ]
: /é fﬂ_ﬁ”‘ B T e S SR Pl
0.1 éf&g:--— e e £ SPEPECE LA tE P PR SRS
0 ————4!"‘".% | | |
-25 -20 -15 -10 -5 0 5 10 15 20 25
SNR [dB]
[14] A. M. Buvarp, D. J. Jakubisin, W. C. Headley and J. H. Reed, "Probability-Reduction of Geolocation using Reconfigurable
Intelligent Surface Reflections," IEEE Wireless Communications and Networking Conference, 2023, pp. 1-6 . ) Virginia
Wireless (1 Tech

Figure Enhancement: Dr. Daniel Jakubisin
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RIS-Based Polarization-Space Modulation

* Carrier wave reflected by a reconfigurable intelligent - !
surface (RIS) towards a receiver m“ raanil ALEHRIINET
o | - = S
* The RIS changes the polarization according to data | -
bits to be transmitted E-Y L
Data Bits 19 Blockage ‘
* Decoding using Quaternion Neural Networks A\
* Assumptions \\
— Line-of-sight propagation (RIS to Rx) e
L . \\ [ 2 Ef=Ej +jE;
— Polarization unaffected by propagation path - /4‘?
ecelver ;
— lgnore parasitic effects and non-linear hardware | /'r' i
— Line-of-sight from Tx to Rx is blocked H
— : : : @hrm,n = 2m f (Tmar Tm, n) mod 2w
Perfect time/frequency synchronization {@“m o [ b Y mmod 2 Wireless G ) Virginia,
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Quaternion Activation Functions

Rectified Linear Unit, RelLU

\
4

Phase projected to Phase Preserved
T /2 Magnitude

Real part cancelled Preserved

No phase Phase projected to

information 0

hoth Real and Ry ¢

Imaginary parts Fns MLy Pl
cancelled

cancelled

Modified Rectified Linear Unit,
modRelLU, with bias |b|

[15] Chiheb Trabelsi, “Deep Complex Networks”, arXiv, 2018.

Hyperbolic Tan

Phase Preserved
Magnitude
Reduced by |b|

Phase Preserved
Magnitude
Reduced by [b|

Magnitugle Zeroed

Phase Preserved
Magnitude
Reduced by |b|

Phase Preserved
Magnitude
Reduced by |b|

(a) Absolute value

Hyperbolic Ha(dTan

1.0
0.8
0.6
0.4
02

100 1
075 1

050 1

Hardtanh{x)

| | |

o o o
| (5 I ]
L = LA

—1.00 -

025 1
000 1

-10.0 7.5

-5.0

—2.5

E-.ICI 2I5 SICI ?IS 1EII.3
Wiral 0 Virginia
ireless (1 Tl
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Numerical Simulations X

* Reconfigurable intelligent surface
-50¢
— A/5 element spacing (both x and z) = -
- 1m? 650x 650 elements 5-100- _—__ _—:_‘::E 70 %
- - )
Fraunhofer region: 260 meters T e, e -80 -
_ - _ Q
Model is fully programmable with 5'150 - 0
regards to positions/dimensions e -100 §,
-200 ¢ -
* Receive power measured at each ¢ Position of the RIS -110
1 meter in both x and y direction * Position of the receiverf 1§ ,
-250 ¢ | - |
* Constructive superposition at receiver 0 10 20
Objective: Maximize SNR at Rx [5] X [meters]
[16] A. M. Buvarp, K. V. Mishra, A. |. Zaghloul and L. Mili, "Quaternion-Neural-Networks-Based Decoder for RIS-Aided Polamza’nonereleSS Vlrgl%nah

Space Modulation," IEEE Internahonal Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2023.
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Bit-Error Rate Performance @ k-

* QNN was trained with seven different 1071}
activation functions

. . -2
— b is a bias parameter for gModRelLU £ 10 S
Cd ‘ hhh.-“'-.
* BER evaluated from-5 dB to +10 dB SNR 5 :
~ 103 —— SfM Cforlwcjjuglate .Ié);coder | |
-] == \Weiszfe gorithm '
* The QNN follows the shape of the OFDM - Weisztald Geodesic ;
A —=GM-Estimator \ . 1
. , 10" |=—QNN with HModReLU, b=0.2 _
* Asinh and Tanh yields best performance —QNN with HModReLU, b=0.8 5 .
=—QNN with Casinh 3 :
—QNN with Asinh ™ -
1072 i=—QNN with Tanh Y
— QNN with HardTanh
OFDM-BPSK |
-5 0 5 10
SNR [dB]

Wireless () Vlrgl?gclh
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RIS Challenges and Open Research Areas

* Channel modeling and path loss modeling ~ * Assisted localization

* RIS modulation and coding * Non Orthogonal Multiple Access (NOMA)
* RIS channel estimation * |oT

* Analysis of stochastic geometry * Back-scattering

* RIS resource allocation * UAV communication

* Beamforming optimization * Wireless power transfer

* System energy minimization * |ocalization

* Physical layer security

Wireless (cD Vlrgl?éeclh
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Significant Problem: RIS Channel Estimation

* Channel State Information (CSI)

— The most important aspect of wireless communications

* Develop channel estimation methods
— Estimation has very high complexity

— High rank problem with M x N x P paths

* P elements of the receive array

— Two paths
* RF source to RIS

* RIS to Recelver

Wireless (D \'emia,
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Conclusions

T

* RIS enables new paradigm of controlling the channel with software
* Power-reduction with less RF chains
* Anomalous reflections and other electromagnetic operations

* Performance enhancement with artificial multi-path

Wireless (€1 V‘rg‘%’égh
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