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Historical Timeline

 SCADA only monitoring

— Vulnerable to errors in measurements, network
model parameters and topology

— No direct measurement of phase angles
e |ntroduction of SE using SCADA

— Phase angles can be estimated
— Errors can be detected and removed

[*] Schweppe, F.C., Wildes, J., and Rom, D., “Power system static state estimation: Parts |,
I, 111", Power Industry Computer Applications (PICA), Denver, CO, June 1969.




Static state estimation

— State variables: voltage phasors at all system buses

— Measurements:
* Power injection measurements
e Power flow measurements

e \oltage/Current magnitude measurements

e Synchronized phasor measurements

|
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State estimation: data/info flow diagram
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— Available every 1/30 seconds

Topology
Processor

—— — Both voltage and current phasors

— More accurate than SCADA but not error free



Under the Recovery Act SGIG and SGDP programs, their numbers rapidly increased : 166 - 1700

Phasor Measurement Units and Synchrophasor
Data Flows in the North American Power Grid
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@ PMU Locations

Y¢ Transmission Owner Data Concentrator
* Regional Data Concentrator

/" data up to reliability coordinator

/ data between reliability coordinators
/" peer to peer data exchange

With information available as of March 9, 2015

“Advancement of Synchrophasor Technology in projects funded by the American Recovery and

Reinvestment Act of 2009”, March 2016.



Phasor Measurement Units (PMU)
Phasor Data Concentrators (PDC)!"!
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[*] IEEE PSRC Working Group C37 Report
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Measurements provided by PMUs

I phasors /l

V phasor

ALL 3-PHASES ARE TYPICALLY MEASURED

BUT
ONLY POSITIVE SEQUENCE COMPONENTS ARE REPORTED
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Tutorial Example: Placement of PMUs

B12 B13

iH B8

e

BUSES REACHED:

B3

B1, B2, B3, B4, B5,

o B6, B11, B12, B13
- Power Injection ’ ’ ’ ’
- J B9, B10, B14, B7,

___ :Power Flow @ :PMU B8

o= - Voltage Magnitude
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Tutorial Example: Placement of PMUs

B12 B13

CONSIDERING
ZERO INJECTION
AT BUS B7 !

BS

1

BUSES REACHED:

B1, B2, B3, B4, B5,

o B6, B11, B12, B13
- Power Injection ’ ’ ’ ’
- J B9, B10, B14, B7,

: Power Flow @ :PMU B8

o= - Voltage Magnitude
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Branch PMU Placement for Full Observability

Only 7 branch PMUs make the entire system observable.

13



Use of Synchrophasor Measurements

Given unlimited number of available channels per PMU, it is
sufficient to place PMUs at roughly 1/3 of the system buses to
make the entire system observable just by PMUs.

Number of PMUSs

Systems No. of zero _
Y injections | lgnoring zero
Injections
14-bus 1 4
57-bus 15 17
118-bus 10 32




Incorporation of PMUs in State Estimators:
_Hybrid Estimation

Hybrid State Estimation:
 Use of hybrid measurements
 Use of hybrid estimation methods

Challenges:
e Different scan rates of SCADA and PMUs
Every 2-3 seconds versus every 33 ms
e Different accuracy classes
e Lack of full observability by PMU measurements
e Coordinating two different estimators running
together




Re: SEL Synchrophasors Brochure
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Phase angle measurement between chnitical locations on a power system
provides operators with an early warning of potential system collapse.
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SCADA and PMU Measurements

Using conventional SCADA-based SE - System collapses without warning
Using mixed measurement based SE = Tracks state and takes control action

*

SCADA
measure.

SCADA
measure.

PMU measur.

PMU measur.

PMU measur.

PMU measur.

PMU measur.
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Hybrid SE Using Both SCADA and PMU Measurements

Challenge: Different scan rates of SCADA and PMU measurements.

s N
/Z
s SCADA \ SCADA
/ Measurement \ Measurement
/ \ Simultaneously refreshed
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\ | e ™ N
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\\ // ~ \\ _ _ _ -
N s T —_ ==

PMUs are refreshed only



Possible Implementation of a Hybrid Scheme

Non-linear
Estimator t 't
X estimated PMU
Yes
Update SCADA X SCADA
paate , estimated ew
—— | LAV Estimator ——»
measurements S+ : measuremen
SCADA Linear ?
Estimator
No

Next iteration




Test Case

e |[EEE 57 bus system
— 9 branch PMUs
— 32 Power injection measurements

— 32 Power flow measurements

e \oltage collapse at bus 22
— No PMU at the bus.



57-Bus System

<

Voltage Collapse
Bus Location

' Power injection measurement
® Power flow measurement
\9 Voltage phasor measurement
o

Current phasor measurement

© Ali Abur



Voltage at Bus 22 Tracked by the Two Estimators
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Historical Timeline

 Phasor Only State Estimation
—Requires phasor based observability

—Needs to be faster than scan rate of
PMUSs

—Should handle bad data (detect and
remove)



Incorporation of PMUs in State Estimators:
Using Only Synchronized Phasor Measurements

PMU-Only State Estimator:
 Use of only phasor measurements
e Use of robust estimation methods

Challenges:
* Requires a large number of PMUs for full observability

e Estimation should be faster than PMU scan rate
e Robustness should preferably be built-in




Measurement equations

SCADA Measurements
Z=h(X)+v Non-linear Model
H, :Vh(X)

Phasor Measurements
/=H-X+v Linear Model
H : Function of network parameters only

A.G. Phadke, J.S. Thorp, and K.J. Karimi, “State Estimation with Phasor Measurements”,
IEEE Transactions on Power Systems, vol. 1, no.1, pp. 233-241, February 1986.



Phasor-only WLS state estimation

Z=H-X+0v Linear Model

WLS state estimation problem:

m I,-_2
Minimize Z'—Z
i O

A

Subjectto r=Z-H-X residual

e

X =G'H'R™'Z Direct solution
G=H'R'H:;R=E{v-0'}=cov(v)
o’ :R(i,i) error variance



Phasor-only WLS state estimation

Consider a fully measured system:

S _ V™| = Bus voltages
- | m | = Branch currents
U
= -[V]+U
_Yb ' A_

U : identity matrix
Y, : branch admittance matrix
A :branch - bus incidence matrix

Note: Shunt branches are neglected initially, they will be introduced later.



Phasor-only WLS state estimation

VT lem+jfm
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Phasor-only WLS state estimation:
Complex to real transformation

SCRIsT _
fm U ||[e

= : +v
c" gA —-DbA| | f
d™ bA  gA |




Phasor-only WLS state estimation:
Exact cancellations in off-diagonals of [G]

R is assumed to be identity matrix without loss of generality
— _T — —_—

U U
. U U
G=H -H-= -

gA —DbA gA —DbA

bA gA | |bA QA
__U +AT(ng+bTb)A 0 )
I 0 U+AT(bTb+ng)A_
4 [G] matrix: A

* |s block — diagonal
* Has identical diagonal blocks
. * Is constant, independent of the state Y,




Phasor-only WLS state estimation:
Correction for shunt terms

[Z]=(H+H_)-X+vo=H-X +u

u=H, -X+v

E{u} = Hsh-E{X}

E{X}=X =G*H'RZ

X o :G‘lH R‘l(Z ~H, -X)
:X—G‘THTR‘leh}-X

|
Very sparse




Fast Decoupled WLS Implementation Results

Test Systems Used

Number of
Phasor
Measurements

Number of Number of

Buses Branches

159 198 222
265 340 361
3625 4836 4982

Cases simulated:

Case-1: No bad measurement.
Case-2: Single bad measurement.
Case-3: Five bad measurements.

32



Fast Decoupled WLS Implementation Results

MEAN CPU TIMES OF 100 SIMULATIONS

CPU Times (ms)
System Case Decoupled
WLS WLS
1 5 2.4
A 2 5.7 2.7
3 9.3 3.9
1 7.5 3.5
B 2 8.7 3.9
3 14.8 5.8
1 137.4 75.9
C 2 169.5 95.7
3 284.7 165.6




L, (LAV) Estimator

m
Minimize » c'-|r|
1=1

Subjectto Z=H X 4T
¢ =[11...1]

Robust against gross errors



L, estimator

e Computationally efficient. Fast Linear
Programming (LP) code exists to solve large
scale systems.

e L, estimator automatically rejects bad data
given sufficient local redundancy, hence bad
data processing is built-in.



Conversion to Equivalent LP Problem

minc’ |r| minc'y

= st. My =1z
y>0

st. HXx+r =z

CT — [On On Cm Cm]

y:[X; XJ u' VT]T X=X,-X,
M=[H —-H | -I] r=u -V



Phasor-Only Robust State Estimation

Objectives
» Perform static state estimation using a redundant set of PMU measurements

» Maintain robustness against bad data

WLS Estimator- Voltage Magnitudes (p.u.)

Robust LAV Based Estimator Testbed

Hydro

Estimated States

049 1} IQS 1I 1 IDS 1 I1 1 %5
True States
LAV Estimator- Voltage Magnitudes (p.u.)

wn
T

Estimated States

140-Bus NPCC System

i I I i i
0.9 095 1 1.05 1. 115
True States



3625 Bus + 4836 Branch Utility System

Case a: No bad measurement.
Case b: Single bad measurement.
Case c: Five bad measurements.

e cmer Gamec_
- 3.33 s. 3.36 s. 3.57 s.

AR 2.32s. 9.38 s. 50.2 s.
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Phasor-only state estimation:
WLS versus L, (LAV)

WLS : L, (LAV):
— Linear solution (exact cancellations  — Linear programming (computationally
in [G] leading to decoupled competitive with WLS)

formulation)

— Requires bad-data analysis — Built-in bad-data analysis (CPU is
— Normalized residuals test relatively insensitive to BD)

(CPU increases with BD)



Historical Timeline

* Dynamic State Estimation
—Load and generator dynamic models
—Wide-area versus local estimation

—Tool to facilitate dynamic security
assessment



Basic Formulation

Dynamic state vector for the generators is
augmented by the vector of all bus voltage
magnitudes and phase angles.

Considering a system with N buses, the
augmented state vector will be:

xi = [6F wi VI 6]] at time instant k



Modeling [ DSE ]

DSE: Single machine / zonal / wide-area
Detailed Gen and Load models Tracking the network and
Frequency and power angle estimation dynamic gen/load state
variables in real-time

N '.‘Load 1 Load 2
\

Zone-2

Zone-1

' ® ~@___-
Transmlssmn Network - <
-~

[L{nes + Transformerﬁ,
! ‘'@ @ 7

\ 42



Basic Formulation

e Use all available measurements to form z

e Discretize the dynamic state and
measurement equations

 Form the set of discrete time equations:

Xk-l-].: f(Xk,k)-I-Uk

Z, =h(x.,k)+e,



Extended Kalman Filter

 Prediction:

X = fia(X 1, k=1)

Pk_ — Fk 1 Pk+—1 FkT—l T Lk —1Qk—1 Ll 1

e Correction:

Re =R+ K, (2, —h(% k) |
K, =P, H/(H P H +MRM]J
Pk+ — (I — Kka)Pk_

k-1

k

44



DSE: Direct and Two-Stage Implementations

DIRECT
Zwide-area DSE X
TWO-STAGE A
Y .
1+ Y1
Robust |
Linear A
Zwide-area DSE -S> X
Phasor Ao
Estimator | — 1’Q1 | 7

45



Timeline: Centralized/Direct DSE

/\/\/\/\
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Timeline: Local/Two-Stage DSE

e
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Robust Dynamic State Estimation

Measurements associated

Estimated inputs 8§
with each zone

measurements

Bad data present starting at t=15 sec. until y=20 sec.

0 70
8 — 8 65
O e _—gt ] O
9. Q 60
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QO oAy 9
g D 50
© 55 % 45 I X
§ 50 § 40 "
Dc:) 0‘? 35 J
45 30 i
5 10 15 2 2 20 0 5 10 15 2 P5 30
time [sec] time [sec]

Robust DSE Using LAV estimates DSE Using Raw Measurements



Observability Analysis for Time Varying Systems

For a time-varying dynamic system, the outcome of
observability analysis will also be time dependent.

Outcome of observability analysis will no longer be
binary, but the degree (or strength) of observability for a
given measurement set at a given time instant will be of
Interest.

One metric to quantify this strength is the smallest
singular value of the approximated observability matrix.



Approach

Two Alternative Observability Analysis Methods:

1. Use of small signal approximation and compute
observability matrix for linear dynamic systemes.

2. Use Lie derivatives to compute the observability matrix
and its smallest singular value.



Linear Time-Invariant Discrete-Time System

X(k+1) = A X(k) + B U(k)
Z(k) = C X(k) + D U(k)

Observability matrix: -

~ CA
o= |

_C'fAﬁ—] |

Dynamic system will be observable if the row rank of O
is equal to n (dimension of the state vector).



Small Signal Approximation

First order approximation for matrices A and C can be
calculated at discrete time step k:

of Of
Ak — (ﬁ_ff X=X (’Tﬁ; — _:3_ X=X}
X OX

First order approximation for matrices A and C can be

calculated at discrete time step k, yielding the approximate

observability matrix (O,) : o
k

- C, A,
0, = k2

v n-1
| el



Results

MEAN AND STANDARD DEVIATION OF THE SMALLEST SINGULAR VALUE OF THE APPROXIMATED OBSERVABILITY MATRIX

Measurement ) 0] O and E’
q
Mean 0.135 0.052 0.205 0.158
STD 0.006 0.002 0.009 0.001
Measur t r r
easurenien EJ E_,fgf V . VR
Mean 0.062 0 0 0
STD 0.001 0 0 0
Measurement P ) All of the state variables
Mean 0.003
STD 0.0005




Observability Analysis for Time Varying Systems

Pro:
The main advantage of the linear approximation based

approach is its computational simplicity.

Con:
Linear approximation based results may occasionally be

highly inaccurate in particular under highly nonlinear
operating conditions.



Observability Analysis: NL Systems

In case of nonlinear systems, observability will no
longer be a global property but will be determined
locally around a given operating state or equilibrium
point.

This can be done via the use of Lie derivatives of the
nonlinear measurement function h with respect to the
nonlinear function describing system dynamics [*].

[*] K. Muske and T. Edgar, Nonlinear State Estimation, Prentice-Hall, 1997.



Observability Analysis: NL Systems

X = f(x(®)) + u(x(t))

Z = h(x(t))

Lie derivative of h with respect to f will be given by:

Lih=Vh-f
By definition:

Lth = h

(L 1h)
ki _ f .
Lih = X f



Observability Analysis: NL Systems

Defining Q as: CLpChy) o Lp(hg) ]
Q= Li(hy) - Li(hy)
) e L ().

and a gradient operator as:

[ dLp(hy) o dLp(h) ]
0—dao | A o dLi(hw)
AL (hy) - dLF (i)

The observability matrix “O” defined above must have
full rank in order for the system to be observable.



Results:

MEAN AND STANDARD DEVIATION OF THE SMALLEST SINGULAR VALUE OF THE OBSERVABILITY MATRIX- USING LIE-DERIVATIVES

Measurement ) () O and @ E'
q
Mean 0.127 0.09 0.191 0.158
STD 0.019 0.047 0.038 0.001
Measurement ' '
E, | E, V, Ve
Mean 0.062 0 0 0
STD 0.003 0 0 0
Measurement r P T 0, ] All of the state variables
Mean 0.032 2.041 5.09
STD 0.015 0.14 2.07




Validation Via Simulations:

Meas.

Rotor Speed / Syn. speed

Smallest Singular Values
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Validation Via Simulations:

Meas.

Rotor Speed / Syn. speed

Smallest Singular Values

Rotor angle [Deg]

Smallest singular value of O matrix
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Smallest Singular Value Plots

Using all state variables

Using P, and Q,

Smallest singular value of O matrix

Smallest singular value of O matrix

Time [sec]




Remarks and Conclusions

Use of only phasor measurements simplifies the problem
formulation and enables direct (non-iterative) solution.

Hybrid SE can be beneficial in tracking system states during
slow moving emergencies.

LAV-estimator becomes a computationally competitive and
robust alternative to WLS when using PMUs.

Strength of observability for different measurement
configurations appears to be consistent with the ability of the
DSE to track the true trajectory of the dynamic states.

Observability analysis can facilitate sensor selection for
optimal tracking of dynamic states.
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Thank You

Any Questions?

.
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