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California, Arizona, Mexico
September 8, 2011
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Officials said it would take at least 12 hours to repair the system and restore power to the capital Dhaka [AP]
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Situational Awareness

U.S.-Canada Power System Outage Task Force

Final Report on the
August 14, 2003 Blackout
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United States and Canada:

Causes and
Recommendations

Arizona-Southern California Outages

on September 8, 2011

Causes and Recommendations

Inadequate Situational Awareness

The 2003 Blackout Report stated, “A principal cause of the August 14 blackout
was a lack of situational awareness, which was in turn the result of inadequate reliability
tools and backup capabilities. e Similarly, the instant inquiry determined that
1nadequate real tlme sﬂuatnonal awareness contnbuted to the cascading outages. In
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Final Report on the
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Causes and
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Inadequate Situational Awareness
The 2003 Blackout Report stated, “A principal cause of the August 14 blackout
was a lack of situational awareness, which was in turn the result of inadequate reliability

tools and backup capabilities.”m9 Similarly, the instant inquiry determined that

inadequate real-time situational awareness contributed to the cascading outages. In

T - ‘.i

G '4‘0" ";‘.'S‘"<'.-b \”I‘dﬁin |
[, il RN S o8 Bl a0
A.f Y‘, th‘ z :

h ) .

I g N Py A1 1, -

ey "I e o AT, -



Situational Awareness

U.S.-Canada Power System Outage Task Force

Final Report on the
August 14, 2003 Blackout
in the
United States and Canada:

Causes anq 2 0 \\ Voltage magnitude
Recommendations & o \\
-100!
-150

0.005 0.01 0015 0.

/ > Voltage phase angle

v(t) = 1202 cos(2m60t — 7 /4)

Inadequate Situational Awareness
The 2003 Blackout Report stated, “A principal cause of the August 14 blackout
was a lack of situational awareness, which was in turn the result of inadequate reliability

tools and backup capabilities. e Similarly, the instant inquiry determined that
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Early-warning signals for critical transitions

Marten Scheffer', Jordi Bascompte?, William A. Brock®, Victor Brovkin’, Stephen R. Carpenter?, Vasilis Dakos’,
Hermann Held®, Egbert H. van Nes', Max Rietkerk” & George Sugihara®
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Sure enough...statistics can be
useful indicators
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Sure enough...statistics can be
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How can we find the useful®
statistical early warning signs?

*Useful: A sign that shows up early enough
that we might actually be able to do
something about it, even if there is
measurement noise

10
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First let’s define our SDEs

Differential equations.
: (swing egs., governors,
L = f ( exciters, etc.)

9 L, y@j\ Algebraic equations

r.v. for stochastic load perturbations
U = 4:2[ +@ Loads modeled as Ornstein-
B T Uhlenbeck process

Ind. Gaussian r.v.s, 1% std. dev.

Encodes corr. time of load fluctuations
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Choose an operating point,
and linearize around that point
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elegant mathematics to solve. In reality...
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Now solve the SDEs

I'd like to tell you that we came up with new,
elegant mathematics to solve. In reality...

Ao, + o-éAT — —BB' Lyapanov eq.
Stochastic : E[z(t)z" (s)] =exp[—Alt — s|] o,

=

<

-

Methods ¢

°

-
A Handbook for the Natural
and Social Sciences

And then reverse the Kron reduction
to compute the variance and autocorrelation
of voltage and current magnitudes.
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Check to make sure that the
analytical and numerical line up
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And add measurement noise
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And add measurement noise
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Which we can subsequently filter to
largely regain our original signal,
with the interesting side-eftect that some of
the variance now appears as autocorrelation.
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At key locations, we can see clear signs of
instability in Autocorrelation and Variance
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Which statistics provide
useful (detectable)
early warning?



Variance of voltages
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voltage useful?

iy

~0.04; .




Autocorrelation of currents

Not
useful

Detectability

Useful
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Can we find the location/source
of a problem given the statistics?
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Can we find the location/source

of a problem given the statistics?
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Can we find trends that would not
show up in mean values?
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Can we find trends that would not
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Can we find trends that would not
show up in mean values?
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In summary

Autocorrelation and variance are, sometimes, useful
indicators of proximity to instability.

Variances of voltages near loads are consistently good
indicators of proximity to voltage collapse, even when
voltage magnitudes are not.

Autocorrelations of currents near generators (particularly
smaller ones) are generally good indicators of system-wide
stability issues (e.q., inter-area oscillations—Hopf bifurcation)

Frequently, fluctuations can identify the locations of
emerging problems in the network
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