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How can we find the useful* 
statistical early warning signs?
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*Useful: A sign that shows up early enough 
that we might actually be able to do 
something about it, even if there is 

measurement noise
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Lyapanov eq.

I’d like to tell you that we came up with new, 
elegant mathematics to solve. In reality…

And then reverse the Kron reduction 
to compute the variance and autocorrelation 
of voltage and current magnitudes.
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Which we can subsequently filter to  
largely regain our original signal,  

with the interesting side-effect that some of 
the variance now appears as autocorrelation.
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Which statistics provide 
useful (detectable) 

early warning?
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Variance of voltages
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Autocorrelation of currents
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• Autocorrelations of currents near generators (particularly 
smaller ones) are generally good indicators of system-wide 
stability issues (e.g., inter-area oscillations—Hopf bifurcation)

• Frequently, fluctuations can identify the locations of 
emerging problems in the network
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