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How smart structures work
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SMART BUILDING

1. Sensors in a building monitor the building’s movement in response to strong winds or earthquake tremors.

2. Shock absorbers (hydraulic dampers) can then be made to stiffen or relax and heavy weights (mass dampers) can be
moved to reduce oscillations in strong winds, or minimise damage in the event of an earthquake.

3. Buildings that detect an earthquake tremor could even warn other buildings nearby of the approach of a shockwave, so
they could sound an alarm and prepare themselves accordingly.

SMART BRIDGE

1. Wireless sensors mounted on the bridge monitor vibrations, displacement and temperature. This information then
“hops” across the network of sensor nodes to a central computer for analysis.

2.1f a problem is detected, such as a loose bolt or cable, or the beginning of a crack, a2 warning can be sent by SMS.

SMART TUNNEL

1. Wireless sensors mounted on the walls of a tunnel monitor displacement, temperature and humidity. This information
then “hops” across the network of sensor nodes to a central computer for analysis.

2. If a problem with the tunnel lining is detected, appropriate maintenance can be carried out. In future, a smart tunnel
could even use robots to perform some maintenance tasks automatically.
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Basics of Usage Monitoring

Health monitoring:
The process of identifying the presence and quantifying
the extent of damage in a system based on information
extracted from the measured system response.

Usage monitoring:
The continuous process of acquiring operational
loading data from a structure or system.

C R. FARRAR*, N J. LIEVEN, “Damage prognosis: the future of structural health monitoring”, Phil. Trans. R. Soc. A (2007) 365
*Los Alamos National Laboratory
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Damage Prognosis

Usage monitoring (UM)

+

Health monitoring (SHM)

Damage prognosis attempts to forecast system performance
by:

« Measuring the current state of the system (SHM)
« Estimating the loading environments for that system (UM)
« Predicting the remaining useful life of the system.

C R. FARRAR*, N J. LIEVEN, “Damage prognosis: the future of structural health monitoring”, Phil. Trans. R. Soc. A (2007) 365 -
S *) o5 Alamos National Laboratory
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Monitoring systems are expensive, bulky
and require a continuous source of power.

~ -

Electronic powering
IS one of the major
obstacle !

www.hbm.com

Yang Wang, Kenneth Loh, Jerome Lynch and Pl
Kincho Law, University of Michigan .

Strain-gauges with implanted batteries are impractical solution

Solution: Self-powered sensing
Harvest computing power from the signal being sensed.

...........



MICHICAN STATE

i 5| Y

F.r

Circmt

Piezoelectric sensors: Modeling

Two energy harvesting modalities
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Transferred energy - Conversion efficiency
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Principle of operation
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Piezoelectric transducer

Piezoelectric can easily generate voltages >4V,
but can only deliver a very low current

Self-powered, continuous and autonomous sensing

Autonomous computation and non-volatile storage of sensing variablesol
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Electrical Modeling
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Energy efficiency
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Output Voltage (V)

System robustness
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Wireless communication and data upload protocol
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Micrograph of the sensor prototyped in a 0.5 micron CMOS process
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Dental implant

Shoulder ligament strains

Elbow ligament strains

Wrist ligament strains

Hip replacement

Knee ligament strains

Ankle ligament strains

Intra-ocular pressure

Vertebral bone strains

Spinal ligament strains

Joint Replacements Expected to Soar

Thursday, Mar. 05, 2008

Source: Time Magazine

Smart knee replacement

By 2030, cases of primary
hip arhtroplasty in U.S. is
_ _ expected to double to 0.5
Achilles tendon strains million and cases of knee
arthroplasty will grow by

Arch support strains 7 fold to 3.5 million.

Kurtz S, Ong K, Lau E, Mowat F, Halpern M. “Projections of Primary and Revision Hip and Knee
Arthroplasty in the United States from 2005 to 2030 J. of Bone and Joint Surgery, 2007; 89(4):780-785
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FGPM Layer
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Homogeneous

Half-Space

BT/ O + B0, /0z +1/7 (0, —0gg) =0
da,./or + do./z+1/ra..=0
aD,/ar + 8D,/dz +1/rD, =0

Normalized contact pressure
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I(r) = j [B,(0)p(p) + B2 (p)R(p) + B3(p)alp) + B+(0)S(p)ph (rp)dp = 0
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Randomly Distributed Sensors — Generation of full field data in missing points
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Example of longitudinal strain profile evaluated at the
bottom of the HMA layer for a moving load induced by a

class 9 truck

Transverse Position (m)
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Theoretical and estimated strain probability distributions at a
selected transverse location (23cm away from the center of
the wheel path) using data from groups of two sensors at
different spacing distances
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