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Health monitoring:
The process of identifying the presence and quantifying

the extent of damage in a system based on information

extracted from the measured system response.

Usage monitoring:
The continuous process of acquiring operational

loading data from a structure or system.

Basics of Usage Monitoring

C R. FARRAR*, N J. LIEVEN, “Damage prognosis: the future of structural health monitoring”, Phil. Trans. R. Soc. A (2007) 365

*Los Alamos National Laboratory
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Damage Prognosis

C R. FARRAR*, N J. LIEVEN, “Damage prognosis: the future of structural health monitoring”, Phil. Trans. R. Soc. A (2007) 365

*Los Alamos National Laboratory

Usage monitoring (UM)  

+

Health monitoring (SHM)

Damage prognosis attempts to forecast system performance 

by:

• Measuring the current state of the system (SHM)

• Estimating the loading environments for that system (UM)

• Predicting the remaining useful life of the system.
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Fatigue prediction: Miner’s Rule

S-N curve
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in : Number of times the strain 

level exceeded level i

iN : Number for strain level i 

obtained from S-N curve.

Level selection and Counting
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Envisioned monitoring system
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Monitoring systems are expensive, bulky

and require a continuous source of power.

Electronic powering
is one of the major
obstacle !

How to monitor events ?
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Strain-gauges with implanted batteries are impractical solution

Solution: Self-powered sensing

Harvest computing power from the signal being sensed.

Yang Wang, Kenneth Loh, Jerome Lynch and 

Kincho Law, University of Michigan
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Piezoelectric sensors: Modeling
Two energy harvesting modalities 
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Principle of operation

Self-powered, continuous and autonomous sensing

Autonomous computation and non-volatile storage of sensing variables

Piezo-electric 

transducer
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Piezoelectric can easily generate voltages >4V, 

but can only deliver a very low current 

Silicon Oxide
Polysilicon
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Power required for sensor operation: 800nW 

Energy efficiency

200nW
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Injector response measured using 8

prototypes fabricated in the same

and different runs

Injector response measured under

different temperature conditions

System robustness
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Wireless communication and data upload protocol
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Micrograph of the sensor prototyped in a 0.5 micron CMOS process



Shoulder ligament strains

Elbow ligament strains

Wrist ligament strains

Knee ligament strains

Ankle ligament strains Achilles tendon strains

Smart knee replacement

Hip replacement

Arch support strains

Spinal ligament strains

Vertebral bone strains

By 2030, cases of primary

hip arhtroplasty in U.S. is

expected to double to 0.5

million and cases of knee

arthroplasty will grow by

7 fold to 3.5 million.

Intra-ocular pressureDental implant

Kurtz S, Ong K, Lau E, Mowat F, Halpern M. “Projections of Primary and Revision Hip and Knee

Arthroplasty in the United States from 2005 to 2030” J. of Bone and Joint Surgery, 2007; 89(4):780-785

Source: Time Magazine



18

2c

2a
h

Homogeneous

Half-Space

FGPM Layer

r

y

P

-4 -3 -2 -1 0 1 2 3 4
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

 

 

h=-1

h=0.001

h=1

h=2

N
o

rm
a
li

z
e
d

 c
o

n
ta

c
t 

p
re

s
s
u

re



19

Randomly Distributed Sensors – Generation of full field data in missing points
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Estimated data using sensors at a distance of 10cm

Estimated data using sensors at a distance of 20cm

Probability mass function

Theoretical and estimated strain probability distributions at a

selected transverse location (23cm away from the center of

the wheel path) using data from groups of two sensors at

different spacing distances
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