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Introduction

Pattern generalisation has become an important feature of mathematics 
classrooms around the globe. Sometimes these activities focus purely 

on given numerical terms, but the use of pictorial or figural patterns is now 
becoming part of the standard repertoire for such generalisation exercises. 
From a pedagogic point of view, the investigation of pictorial patterns poten-
tially allows for a meaningful way of arriving at and exploring algebraically 
equivalent expressions of generality.

A typical approach to presenting such a patterning task is shown in 
Figure 1. Students are generally required to determine (a) the number of 
dots in the next few terms, (b) the number of dots in one or two terms 
further along in the sequence, for example the 10th or 50th terms, and 
(c) an expression for the number of dots in the nth term, i.e., an algebraic 
expression of generality.

 

Figure 1. A typical pictorial pattern generalisation activity.

However, the presentation of consecutive terms often results in such 
potentially powerful activities becoming reduced to nothing more than rote 
exercises in which the numerical values of the terms are divorced from the 
figural structures that gave rise to them. Once the pictorial context has been 
reduced to a sequence of numerical terms, the general rule can then readily 
be determined by using any number of standard algorithmic approaches.

The danger with such an approach is that the focus becomes “the develop-
ment of an algebraic relationship, rather than the development of a sense of 
generality” (Thornton, 2001, p. 252). Indeed, as Hewitt (1992, p. 7) succinctly 

ENCOURAGING 
MEANINGFUL 
ENGAGEMENTwith pictorial patterning tasks

4 amt 68(2) 2012



remarks, the problem with divorcing patterns of numbers from their origi-
nal context is that any generalised statements become “statements about 
the results rather than the mathematical situation from which they came”. 
Such disconnected algebraic formulation neither illuminates the problem 
nor provides a means for validating the generated functional relationship 
(Noss, Healy & Hoyles, 1997). This becomes particularly problematic in situ-
ations where the justification of the general rule assumes significance (Byatt, 
1994). The ability to justify a general formula is by no means commensurate 
with a student’s proficiency in deriving such a generalisation.

One way of attempting to encourage visual as opposed to numeric 
approaches to pattern generalisation activities is to present the pictorial 
scenario by means of two non-consecutive terms (see Figure 2). This is 
supported by the research literature (e.g., Healy & Hoyles, 1996; Hershkowitz 
et al., 2002; Samson, 2007) which suggests that non-consecutive terms 
would be more appropriate in terms of encouraging attention to be focused 
on the visual stimulus.

Figure 2. Two non-consecutive terms.

Although the presentation of generalisation tasks is an important aspect 
in terms of how students are likely to engage with such exercises, this is not 
the only consideration to be taken into account. Teachers still need a tool-
box of pedagogical strategies which they can draw on to encourage visual 
engagement with the pictorial context. What this article contains is such a 
toolbox of strategies.

Strategy 1:  
Encourage engagement with the pictorial context

Firstly, encourage students consciously to engage with the pictorial terms 
by using the following strategies: 
• Search for structural features that contain as many elements as the term 

number (n), or that occur as many times as the term number. By way of 
example, the pictorial terms shown in Figure 2 could be seen to contain, 
amongst other things, n upward pointing triangles.

• Apply the above strategy more generally by searching for features or struc-
tural units that contain nearly as many elements as the term number 
itself (e.g., n ± 1 or n ± 2) or that occur nearly as many times as the term 
number. By way of example, and referring to Figure 2 once again, the top 
row of horizontal matches contains (n – 1) matches. Alternatively, one 
could focus on the (n – 1) downward pointing triangles.

• Identify elements of symmetry such as left–right equivalence or symmet-
rical structures radiating out from a central point, for example the three 
arms radiating out from a central dot in Figure 1.

• Identify visually striking geometrical features that could be used as 
structural keystones for particular apprehensions. These features could 
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either be recurring elements in the diagrams or solitary items. By way of 
example, consider the two diagrams shown in Figure 2. If we think of the 
leftmost and rightmost pairs of matches as supporting ‘brackets’ or ‘brac-
es’, then we could potentially achieve a structural reorganisation which 
foregrounds the downward pointing triangles. This has the potential to 
lead to the general expression Tn = 3(n – 1) + 4 + (n – 2), where the 3(n – 1) 
represents the three matches required for each of the n – 1 downward 
pointing triangles, the 4 represents the constant two pairs of matches at 
each end acting as ‘brackets’ or some similar structural support, while 
the (n – 2) represents the remaining n – 2 horizontal matches positioned 
between the points of the downward pointing triangles. This scenario is 
demonstrated for Term 4 in Figure 3. 

Figure 3. Term 4 visualised as Tn = 3(n – 1) + 4 + (n – 2). 

In addition, students should guard against the pitfalls of single-case 
concreteness. Within the context of pattern generalisation the crux of the 
enterprise lies in an evolving sense of generality. Prolonged focus on a single 
pictorial term may well act against this central endeavour. Students should 
thus be encouraged to look for commonalities between different terms, pref-
erably non-consecutive terms since this is more likely to occasion a more 
holistic structural perception where attention is not necessarily focused on 
the additive unit. 

Strategy 2: Look for regularities within even-numbered 
or odd-numbered terms 

Encourage students to look for comparative regularities between only even-
numbered or odd-numbered terms. Unexpected visual commonalities may 
be perceived in this manner that could serve as crucial triggers to occasion 
the evolution of new general formulae. Although the general formula thus 
determined may not necessarily make visual sense with respect to all the 
terms in the pictorial sequence, they would still be algebraically correct. 
This observation in itself could open up interesting classroom discussion. 
By way of example, consider the two terms shown in Figure 4.

Figure 4. Two non-consecutive terms. 

There are any number of equivalent algebraic expressions for the general 
term of the sequence. One could, for instance, argue that the top and bottom 
horizontal rows of dots contain n and (n + 1) dots respectively, thus arriving 

6 amt 68(2) 2012



at the general expression Tn = n + (n + 1). But one could also identify other 
structural elements such as upward or downward pointing triangles, zigzag 
shapes, oblique pairs of dots, or even parallelograms. One particular visual 
subdivision would be in terms of non-overlapping upward pointing triangles, 
as shown in Figure 5.

Figure 5. Subdivision of T3 and T5 into non-overlapping triangles. 

By investigating this scenario with other terms one could potentially 
arrive at the realisation that, in terms of this particular figural visualisation, 
there is a structural difference between odd-numbered and even-numbered 
terms. One may thus begin to notice commonalities within these two sub-
groups (Figure 6).

Figure 6. Subdivision of T2, T3, T4 and T5 into non-overlapping triangles. 

One could then potentially make the observation, focusing only on the 
odd-numbered terms, that the number of triangles plus the number of the 
remaining dots gives the Shape number, n the independent variable, in each 
respective case. One could then possibly be able to express the number of 
triangles in each shape as
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In this particular case it would be very difficult to transfer the visual reason-
ing that inspired this formula onto even-numbered pictorial terms since the 
number of triangles in each shape 
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would be a fraction. However, since one can show that the expression simpli-
fies to 2n + 1, it will nonetheless provide the correct numerical answer for 
even-numbered terms. Furthermore, by focusing on only even-numbered 
terms with a similar sort of reasoning, one could potentially arrive at the 
following general formula: 
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Thus, for certain pictorial patterns, a pedagogical strategy of focusing on 
only even- or odd-numbered terms may not only be useful with respect to 
the generalisation process itself, but also in terms of its potential educa-
tional value.

Strategy 3: Towards an expression of generality

What we have focused on thus far relates to a visual engagement with the 
pictorial context. However, there is often a big leap from seeing a structural 
regularity, understanding the generality of that regularity, and finally arriv-
ing at a representative algebraic expression. Where students are able to 
describe perceived visual regularities but are unable to express this regular-
ity in an algebraically useful manner, the following strategies may be useful:
 
• Tabulate a summary of structural features along with the total number of 

occurrences of each structural feature for specific terms.
• Make use of (i.e., draw or construct) pictorial terms further along in the 

sequence (e.g., n ≥ 6) to search for structural regularities. Larger terms 
often act as more efficient triggers than smaller terms.

• Investigate Term 1. There are often structural anomalies or subtle differ-
ences with smaller terms that may well trigger structural understanding. 

When teachers present pictorial patterns to the class they should take 
care not to make use of diagrams in which the term number also represents 
the number of elements in structural features that are likely to be brought 
forth by students. So, for instance, if there is a likelihood of students focus-
ing on squares in a particular sequence, avoid Term 4. Similarly avoid 
Term 3 if it contains triangular structures (or any other potential three-unit 
features) that could act as triggers. This should help avoid confusion aris-
ing from situations where the same numerical value represents different 
conceptual aspects of the given pictorial term. By way of example, consider 
the two terms shown in Figure 7. If we focus on Shape 3 then we could 
calculate the number of dots in Term 3 as follows: T3 = 3 × 3 – 3 based on 
the reasoning that the triangle of dots has 3 sides, each of which contains 
three dots, but since the three corner dots overlap (and as such have been 
counted twice) we need to subtract 3 from the final tally. The choice of Term 
3 as a generic reference point could potentially lead to confusion in terms of 
understanding the generality of the visualisation/calculation. Not only does 
3 represent the Term number as well as the constant number of dots that 
need to be subtracted, but crucially it is also the number of elements in the 

Figure 7. Two non-consecutive terms. 
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identified structural feature as well as the number of times this structural 
feature occurs in the pictorial term itself. Choice of any other Term number 
would have avoided the semantic ambiguity (Samson, 2011a) of the portion 
of her general term, since it was only in Term 3 that this could be ambigu-
ously interpreted as either “n groups of three dots” or as “three groups of 
dots”. Thus, a useful cautionary strategy to keep in mind when consciously 
searching for structural elements in a pictorial term is to make use of bigger 
terms (e.g., n ≥ 5) where there is less chance of such ambiguity obfuscating 
the generalisation process.

In terms of expressing different visualisations in the form of algebraic 
expressions, some students may find it useful to make use of a stepwise 
process of semiotic contraction. By way of example, verbal expressions such 
as, “I multiplied three by one less than the shape number,” could first be 
expressed in the form, “Three times the shape number minus one,” as an 
interim step en route to the algebraic symbolism 3(n – 1). The advantage of 
this approach is that the interim verbal syntax is far more closely aligned 
with the desubjectified algebraic symbolism.

Students should be encouraged to look out for serendipitous numerical 
observations that could lead to the development of general algebraic expres-
sions. For example, if T6 = 21 one could make the numerical observation 
that 21 = 3 × 7. Since 7 in this instance is 1 more than the term number 
this could lead to an investigation to assess whether this situation is always 
true, in which case Tn = 3(n + 1) could be an appropriate algebraic formula 
for the general term. Having determined this general rule numerically, one 
could then search for an associated visual justification. 

Strategy 4: Choice of specific pictorial contexts

Certain features of pictorial patterns tend to encourage particular generali-
sation strategies (Samson, 2007; 2011b). Since one would want students 
to be able to experience a range of strategies, a range of pictorial patterns 
should be included in patterning tasks. These should include:
• questions where the growth pattern occurs in a single direction and where 

progression from one term to the next can be accomplished by the direct 
attachment of the additive unit—i.e., the extra matches or dots that need 
to be added to a given term to create the next term in the sequence (e.g., 
Figure 2 and Figure 4); 

• questions in which the growth pattern occurs in more than one direction 
(e.g., Figure 1);

• questions in which progression from one term to the next can only be 
accomplished by the insertion of the additive unit into the previous term 
as opposed to the direct attachment of the additive unit onto the previous 
term (e.g., Figure 8).

Figure 8. A pictorial sequence requiring an insertion of the additive unit. 
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Strategy 5: The use of manipulatives

Finally, while a conscious search for structure is a useful generalisation 
strategy, so too is unstructured exploration and interaction with the picto-
rial context—a process which could lead to the serendipitous awareness of 
structural regularity. Students should be encouraged to make use of physi-
cal manipulatives (such as matchsticks and plastic counters) to encourage 
such unstructured exploration. Even students who are sceptical about the 
use of manipulatives, and who profess to preferring more visual or abstract 
engagement, should be encouraged to make use of them. It is often the 
tactile, physical and whole-body engagement of such activity that leads 
to unconscious moments of mathematical play that could serve as crucial 
pivots for the evolution of new ‘ways of seeing.’

Concluding comments

The insights presented in this article gradually emerged and evolved during 
the course of micro-analysing data stemming from a broader study (Samson, 
2011b). These insights are synthesised here in relation to possible pedagogi-
cal strategies that could be used to support pictorial pattern generalisation 
activities. As such, I hope that they represent a useful toolbox of strategies 
that teachers can draw on to encourage visual engagement with patterning 
activities presented in a pictorial context. 
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