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Introduction

The ability to solve linear equations sets students up for success in many
areas of mathematics and other disciplines requiring formula manipula-
tions. There are many reasons why solving linear equations is a challenging
skill for students to master. One major barrier for students is the inability
to interpret the equals sign as anything other than a ‘do something signal’.

To succeed in algebra,
students must transition
from this operational view of
the equals sign to an equiv-
alence, or relational, view
(see Table 1 for definitions). 

In this paper we look at
two possible approaches for
assisting students to over-
come this barrier. We first
consider manual strategies

and a related concrete model, and then discuss suitable uses of technology.
The key questions addressed in this paper are:
• How do we equip students with the knowledge and skills to success-

fully solve linear equations? 
• What role does technology play in assisting students with the devel-

opment of these skills and knowledge? 
Although our main focus is on linear equations of the form 

Ax + B = Cx + D, where A, B, C, D are integers, some simpler cases are
discussed. 

What does the literature say?

The ability to view the equals sign as a sign of equivalence can be classified
as a threshold concept of algebra. A threshold concept is defined by Mayer
and Land (2005) as “a new way of understanding, interpreting, or viewing
something” (p. 1) without which the learner could not progress.

equivalence = success

Interpretation of equals Definition

Operational The equals sign is interpreted as
the ‘do something’ signal or as
‘now find the answer’. For
example, 33 + 5 =

Relational/equivalence The equals sign is interpreted as
the ‘left expression is equivalent
to the right expression’. For
example, 3 + 5 = 8 or 8 = 3 + 5

Table 1. Interpretations of the equals sign.
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Although students without a relational view of the equals sign cannot
adequately interpret the linear equations, they can still experience some
success. In Linsell’s (2009) study on students’ strategies for solving linear
equations it was found that strategies requiring only an operational view of
equals, for example counting techniques and working backwards, were
used effectively by low to middle attaining students, on one-step and two-
step problems, such as 4 + n = 7 and 3n + 2 = 14 respectively. Unfortunately
these strategies were not able to be generalised to solve more complex equa-
tions of the form Ax + B = Cx + D, where only the high attaining students
were successful and used either a guess and check strategy or transforma-
tions (“same to both sides”). 

One further difference between operational techniques, such as counting
techniques and working backwards, and transformations is that opera-
tional techniques involve students operating on numbers and unknowns,
while the transformation strategy requires students to operate on the equa-
tion itself (Filloy & Rojano, 1989). It is therefore natural to associate the
operational view with operations acting on components of the equation and
the relational view with operations acting on equations themselves. 

An effective way to develop students’ understandings of the relational
view of equals, and therefore their ability to operate on equations, is
through the balance model (see Figure 1). Filloy and Rojano (1989) found
that the model was effective in giving meaning to the abstract ideas.
However, they stressed the importance of maintaining balance (pardon the
pun) between the use of concrete model and
the corresponding algebraic expressions to
ensure students do not become reliant on
the model. They also acknowledge the diffi-
culty in using the balance model to
represent equations containing negative
numbers or resulting in a negative solution. 

Another approach to developing a rela-
tional view is through the use of technology
(Ball & Stacey, 2001), in particular with the

Strategy Example

Counting technique 4 + n = 7: 4, 5, 6, 7 requires the count of
three numbers so n = 3

Working backwards 3n + 2 = 14

Guess, check and
improve

Keep improving guesses until the two sides of
the equation are equal

Transformation 2n + 4 = 6n – 28
⇒ 2n + 4 + 28 = 6n – 28 + 28
⇒ 2n + 32 = 6n
⇒ 2n + 32 – 2n = 6n – 2n
⇒ 32 = 4n
⇒ 32 ÷ 4 = 4n ÷ 4
⇒ 8 = n

Table 2. Examples of strategies.

n ⇒ 3n ⇒ 3n + 2

4 ⇐ 12 ⇐ 14

Figure 1. Balance model.
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use of spreadsheets and graphs (see Figure 2). Ball and Stacey believe that
graphical and numerical approaches, for example spreadsheets, “give
students a better understanding of what a solution of an equation means,”
(2001, p. 4) and prevents them from losing sight of the purpose of solving
linear equations. 

Figure 2. Numerical and graphical solution for 3x – 5 = –x + 3.

In addition to numerical and graphical techniques, standard calculators
used by upper secondary students have the capacity to provide exact solu-
tions of linear (and non-linear) equations (see Figure 3). Ball and Stacey
(2001) acknowledged that with such technology available it is necessary to
reconsider how we approach the teaching of equation solving. However, they
stated that due to the “intellectual importance” and “centrality to mathe-
matics” of the skill, students still require a sound knowledge of the
fundamental principles of solving equations. 

Figure 3. Solution for 3x – 5 = –x + 3 using a CAS calculator

Implications for the classroom

Due to the dominant use of the equals sign it is not surprising that the
majority of students view it as an operation. Before beginning the topic of
linear equations it is essential to identify students who have solely an oper-
ational view of the equals sign. A suitable diagnostic test is provided in the
Appendix. Lesson ideas for moving beyond the operational view of the
equals sign can be found on the Mathematics Developmental Continuum
(DEECD, 2010a) under “Equivalence in number sentences.” The lesson
ideas are based in the arithmetic world making them accessible to pre-
algebra students. 

Although the long term aim is to enable students to solve more complex
problems using the transformations, our teaching (and consequently
students’ learning) is greatly benefited by acknowledging students’ existing,
perhaps operational, strategies. For example, although the less sophisti-
cated strategy of working backwards does not enable students to solve
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linear equations of the form Ax + B = Cx + D, it still plays an important role
in the development of students’ algebraic proficiency. The key idea in
working backwards is the notion of an opposite operation. Without such
knowledge students would not be able to progress to the more complex
strategy of transformations. Approaches to teaching the working backwards
strategy can be found on the Mathematics Developmental Continuum
(DEECD, 2010b) under “Structure of algebraic expressions.” 

To further cement the notion of equivalence and introduce students to
the idea of operating on equations we recommend the use of the balance
model, shown previously in Figure 1. Pictures are effective, however a
fantastic applet is available for free from the National Library of Virtual
Manipulatives (Cannon, Dorward, Duffin & Heal, 2010). The applet
contains a pictorial image of the problem and allows the student to work
towards the solution by successively choosing operations to act on the
equation. Note that the applet uses helium filled balloons to represent nega-
tive numbers and can thus represent equations containing negative
numbers or resulting in a negative solution, overcoming one of the models
original short falling identified by Filloy and Rojano (1989). I would also
recommend using the applet before moving to drawn diagrams as with the
applet students are only required to identify the step, for example divide
both sides by 4, they are not required to carry out the computation. This is
most helpful as students can observe the effects and make meaning of oper-
ating on the equation before progressing to doing both procedures on their
own. For further details on effects of this type of computer-aided scaffolding
refer to (Robson, Abell, & Boustead, 2009). 

It is important to acknowledge the warnings of Filloy and Rojano, and
ensure that students can eventually make sense of the abstract equations
without the aid of the model. One approach to achieving this is to encourage
students to work concurrently in two columns. Using the first column for
the concrete representation, the second for the algebraic. 

In addition to the technologies available on the internet, calculators can
be used very effectively to show the relational nature of the equals sign. The
following word problem can be solved three ways using a CAS calculator
(see Figure 4). 

The events manager at the MCG (Melbourne Cricket Ground) employs you to
walk around the crowd and sell pizza at the upcoming St Kilda versus
Geelong game. He offers you two alternative pay structures. The first has a
flat rate of $30 for the game plus $0.50 per pizza sold, the second has a flat
rate of $26 for the game plus $0.75 per pizza sold. How many pizzas do you
need to sell so that these two pay structures give exactly the same pay?

Figure 4. Screen dumps showing numerical, graphical 
and algebraic solutions of 0.5x + 30 = 0.75x + 26.
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The table computes the left and right hand sides of the equation individ-
ually and helps students identify the value of x for which both sides are
equal. The graph provides a visual representation of the problem. To ensure
that this approach assists students’ understanding of equals as an equiva-
lence, students must appreciate that the intersection occurs when 
0.5x + 30 = 0.75x + 26. The algebraic approaches only provide an answer to
the problem and consequently do not assist students’ understanding of the
equals sign as an equivalence. However, the algebraic approaches do show
students the capabilities of the technology, and are therefore worth
including.

The following aspects of the pizza sales problem are beyond the scope of
this paper (some references are provided for the interested readers):

• generating algebraic equations from the given information (Mason,
Graham & Johnston-Wilder, 2005);

• the difference between unknowns and variables (Küchemann, 1978);
• the benefits of using problems of this style to facilitate an apprecia-

tion of the purpose of learning to solve linear equations. 

Conclusion

To conclude we summarise our paper by explicitly answering our key ques-
tions.

How do we equip students with the knowledge and skills to
successfully solve linear equations? 
The key to teaching students how to solve linear equations is in extending
students’ notion of equals from an operation to an equivalence. By first
exposing students to this viewpoint in arithmetic, they can start converting
their understanding before being introduced to the more complex world of
algebra. Models can be used to support this awareness and furthermore
assist students’ understanding of operating on equations. However, as in
the case with any use of models, care must be taken to ensure that the
model is only used as a temporary support for developing understanding of
the abstract ideas. 

What role does technology play in assisting students with the
development of these skills and knowledge?
Applets available on the internet and students’ calculators can be used to
effectively develop students’ understanding of the equals sign as an equiv-
alence. Graphical and numerical methods show students both sides of the
equation separately and allow meaning to be made of the solution value. 

In this paper we have shown how to build students’ understanding of a
concept (equals sign as an equivalence) to assist their understanding and
development of a procedural skill (solving linear equations). This approach
can be employed when teaching any procedural skill. Such an approach is
more comprehensive and is likely to result is a higher quality of student
learning.
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Appendix

The following is from Knuth, Alibali, McNeil, Weinberg and Stephens (2005).

Task 1: Interpreting the equals sign

The following question asks about this statement:
3 + 4 = 7

↑
a) The arrow above points to a symbol. What is the name of the symbol?
b) What does the symbol mean?
c) Can the symbol mean anything else? If yes, please explain.

Task 2: Using the concept of mathematical equivalence.

Is the number that goes in the [  ] the same in the following two equations? 
Explain your reasoning.

2 × [  ] + 15 = 31           2 × [  ] +15 – 9 = 31 – 9




