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Abstract 

This Ontario-based qualitative study examined secondary school and college textbooks’ treatment of 
trigonometric representations in order to identify potential sources of student difficulties in the transition 
from secondary school to college mathematics. Analysis of networks, comprised of trigonometric 
representations,identified numerous issues around the treatment of trigonometry in selected secondary and 
college textbooks that may contribute to a lack of coherence for the learner. The results of this study have 
the potential to inform discussions around the teaching and learning of trigonometry at the secondary and 
college educational levels to ultimately provide a more seamless transition for students. 

Context for the Study 

First semester college students experience many challenges – a fast-paced curriculum, more traditional 
teaching styles, a new social milieu, adjustments to living on one’s own for the first time, and more 
(Pascarella & Terenzini, 2005). Studies of the transitional process between secondary and post-secondary 
school have also found that students may experience difficulties in mathematics achievement (Hoyles, 
Newman, & Noss, 2001; Kent & Noss, 2001;Marcus, Fukawa-Connelly, Conklin, & Fey, 2007-08; Smith & 
Star, 2007; Wood, 2001). However, while there has been much discussion regarding students’ inability to 
successfully  transfer fundamental mathematical knowledge to the college mathematics classroom,much of 
the researchfocuses on topics, such as algebra; little attention has been given to trigonometry and how 
multiple representations are used to teach trigonometry (Davis, 2005). This is unfortunate, because 
knowledge of trigonometry is crucial to success in many Ontario college technology programs, such as 
electrical engineering, mechanical engineering, and architectural design. 

In particular, being able to mathematically connect different representations or generate new representations 
of the same object has been shown to be a strong indicator of a college student’s mathematical knowledge 
and ability (AMATYC, 2006, p. 5; Kessel & Linn, 1996, p. 13).Research suggests that using multiple 
representations, in both teaching and learning, supports the development of mathematical understanding 
(c.f., Choike, 2000; Pape & Tchoshanov, 2001). In fact, when students learn multiple representations, they 
are preparing for the kinds of activities common to those who use mathematics in their professional work 
(Greeno & Hall, 1997) – activities that require selecting an appropriate representation or set of 
representations for a particular situation. 

Studies Investigating Mathematics Achievement

Recent studies conducted both nationally and provincially in Canada have examined factors related to 
college mathematics success. For example, in a study conducted by the Association of Canadian Community 
Colleges (ACCC, 2007), college studentswere asked to self-report on academic skills typical of college 
success. The study reported that over one-third of Canadian college students did not consider themselves to 
have good mathematics skills, nor did they perceive that college studies helped to improve these skills 
(ACCC, p. 45). 

In a second study, the Ontario Ministry of Education commissioned The Double Cohort Study to examine 
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the effect of curricular changes implemented in 1999. Due to changes in the Ontario curriculum, two groups 
of students graduated from secondary school in 2003 – one group under the previous curriculum, in which 
most students took five years to complete secondary school, and one group under the revised curriculum, in 
which students graduated in four years. The results of this study were published in a series of four research 
reports: Phase 1 in 2001, Phase 2 in 2002, Phase 3 in 2003 (revised in January 2004), and Phase 4 in 2005.A 
key finding, reported in Phase 3, found that in the double cohort year, 2003, college-bound students were 
“slightly less likely to meet college admission requirements” (King, 2003, p. 21) than in the previous year, 
i.e., 2002. In fact, “There was no clearly defined college/tech group of students” (King, p. 39). 

In Phase 4 of the study, King, Boyer, and Chin(2005) criticized the availability of college-preparation 
courses in Grades 11 and 12 noting, “Very few schools are able to offer meaningful college-preparation 
course sequences. Even the College Technology courses in Grades 11 and 12 are under-enrolled, and those 
who do enrol in them are more likely to go directly to work rather than to college” (p. 117). Thus, it is not 
surprising that in 2007 the Ontario College Mathematics Project (CMP) research team, examining student 
mathematics achievement in engineering technology at six Ontario colleges, found a low proportion (25%) 
of which students took the secondary school mathematics course that was listed as a prerequisite to college 
technical mathematics – MCT4C (College levelGrade12 Mathematics for College Technology), while more 
than half of the in-coming students took MAP4C (College Level Grade 12 College and Apprenticeship 
Mathematics) – a course designed for general college studies. By the end of the first semester, 69% of the 
MAP4C group were considered “at risk” compared to only 31% of the MCT4C group (CMP, 2007). That is, 
the College Mathematics Project found that students from particular secondary school sequences of 
mathematics courses did better than those from other sequences. 

These statistics suggest that certain courses and/or pathways1 may not provide adequate preparation for 
college technology mathematics. 

The Research Questions 

The results of CMP (2007) provided evidence of a widespread problem with student success in first-year 
college mathematics. A subsequent review of research literature on student transitions and mathematics 
difficulties suggests that gaps in content, (i.e., missing or poorly connected mathematical elements) might be 
a factor. Given the importance of trigonometry in college technology programs, the treatment of that content 
area was investigated through an examination of trigonometric representations in a sample of secondary 
school and first semester college technical mathematics textbooks. In particular, a focus was placed on 
Grade 10 – when trigonometry is first introduced – through Grades 11 and 12, into a first year college 
program, in order to explore the evolution of trigonometric representations between the two educational 
sectors. 

The research questions were: 

1. What is the relationship between secondary and college technical mathematics treatment of 
trigonometry? In particular, how do the representations in secondary school college pathway courses 
compare with the representations used in a first semester college technology mathematics course?  

2. How can this research inform the teaching and learning of trigonometry in the secondary and college 
educational sectors?  

Answers to these questions were sought through a qualitative study using Goldin’s (2003) theoretical 
framework of systems of representations as a lens to examine trigonometric representations. 

Literature Review 

Since a key goal of the study was to examine learning sequences using trigonometric representations 
through secondary school and college textbooks, the research literature was examined with respect to 
trigonometric learning sequences and the role of textbooks in the classroom. In addition, a theoretical 
framework for examining and characterizing representations was sought out; that framework was based on 
Goldin’s theory of representations (2003). 
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Trigonometric Learning Sequences 

Three key research reports support specific pedagogical sequences for successful learning of trigonometry. 
First, Kendal and Stacey (1997) determined that students who were initially taught the right triangle 
representation outperformed the second group. This research suggests a specific learning sequence for 
trigonometry beginning with the right triangle. 

Second, Calzada and Scariano (2006) developed a learning sequence connecting algebraic and geometric 
concepts to help students formulate a trigonometric representation based on the principle of “invariance.” 
The sequence begins with concrete concepts identified by the authors as being familiar to the student – the 
properties of geometric objects, such as the triangle and rectangle, and the properties of similar triangles, 
congruency, and area. Students then review the Pythagorean Theorem, since it connects the lengths and 
interior angles of right triangles. 

Third, Pritchard and Simpson (1999) argue that the traditional instructional sequence – that is, teaching 
trigonometry using definitions then working on developing concepts – can lead to student problems with the 
construction of trigonometric images (p. 86). According to Pritchard and Simpson, a consequence is that 
students have difficulty transferring their understanding of algebraic functions to those of trigonometric 
functions. This finding supports research conducted by Tall (1992). He found post-secondary teaching tends 
to teach definitions then apply concept development, although the college learner may benefit from the 
reverse pattern – concept development then use of definitions (Tall, p. 508). 

The Role of Textbooks in the Classroom 

The textbook often serves as an instructional and assessment guideline for teachers. Textbook authors are 
professional subject experts and, through their writing, make decisions about what and how mathematics 
should be taught and assessed. Once mathematics knowledge is printed, it tends to become institutionalized 
and incontestable. According to Herbel-Eisenmann (2007), the textbook becomes a guide and a source of 
authority for pedagogical instruction in all types of classroom settings thereby supporting a student’s 
enculturation into the practice and language of the mathematics community (p. 345). In fact, many teachers 
rely on textbooks as their main resource for teaching mathematics (Cirillo, Drake, & Herbel-Eisenmann, 
2009). This is illustrated by an example in Weber’s (2005) research into the textbook’s role in guiding 
classroom instruction – a teacher reported that he taught by demonstrating techniques via the solutions to 
example problems in the textbook (p. 94). 

Reconceptualizing Goldin’s Theory of Representations into Networks 

In mathematical problem solving, representations are considered objects (nouns); when these objects are 
applied, the user engages in a process of representing, which is then considered an action (verb). This view 
of representations is held by a number of researchers(c.f., Font, Godino, & D’Amore, 2007; Godino, 
Batanero, & Roa, 2005; Goldin, 2003; Greeno & Hall, 1997; NCTM, 2000; Pape & Tchoshanov, 2001). 
Goldin (2003) clarifies the relationship between the terms “representation” and “represent” by providing the 
following definition: 

A representation is a configuration of signs, characters, icons, or objects that can somehow 
stand for, or “represent” something else. According to the nature of the representing 
relationship, the term represent can be interpreted in many ways, including the following (the 
list is not exhaustive): correspond to, denote, depict, embody, encode, evoke, label, mean, 
produce, refer to, suggest, or symbolize. (italics in the original; p. 276) 

Goldin’s (2003) theory of representational systems begins with primitive characters, signs, or icons. Signs 
can be well defined – such as letters of an alphabet and numerals, ambiguous – such as real-life objects and 
their characteristics, mathematically abstract – such as vectors and matrices, or physically abstract – such as 
masses and velocities. 

Signs are combined into configurations through established rules and practices that areaccepted by the 
mathematics community. For example, numerals and arithmetic symbols, such as “+,” “-,” “´,” and “¸,” 
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combine through an understanding of number and equality into equivalent numerical expressions.
Configurations evolve, becoming increasingly complex or altered, based on their relationship with other 
configurations. They can also combine uniquely to form a unified model for a representation. Additional 
structure is added to the representation by rules (sometimes ambiguous), which allow movement from one 
configuration to another within the system “establishing a kind of network structure” (Goldin, 1998, p. 144). 
The final representational system is characterized by a higher structure, which relates the configurations 
meaningfully and provides meaning to the signs and configurations themselves (Goldin, 2003, p. 276).  

Font, Godino, and D’Amore (2007) and Goldin (1998) share the view that relationships between and within 
representational forms comprise a network-like structure; therefore, Goldin’sframework of representational 
systems was reconceptualised into a general representation network of trigonometry. This general network 
was used to organize and examine trigonometric representations identified in selected secondary and college
textbooks.For example, Goldin’s ideas of primitive signs, configurations, representations, and horizontal 
correspondences were reconceptualized into nodes, hubs, clusters, links, and representation domains in order 
to sort the figures, such as words, symbols, figures, expressions, equations, and drawings, identified in the 
post-secondary resource textbooks.  

Methodology 

Before beginning the study, a college program that had trigonometry as a curricular focus needed to be 
selected. Then, the secondary school pathways suggested to prepare for this program needed to be identified. 
This information guided the direction of the learning sequences for trigonometry between secondary school 
and college studies. 

Selecting the College Program 

In order to select the college program, the engineering technology program standards from the Ministry of 
Training, Colleges and Universities (MTCU) website were reviewed to determine which program would 
include a solid understanding of trigonometry. As a result of this review, the electrical engineering 
technology program was deemed to have the most trigonometry content. Students entering this college 
program would be expected to have some fundamental understanding of trigonometry or related concepts on
which to build their understanding of higher level concepts.  

Selecting the Secondary School Pathways 

The Ministry of Education mathematics curriculum documents from 1999 and 2000 were reviewed to 
determine the pathways suggested to students in order to prepare for a college technology program. Three 
pathways were identified. The courses that college-bound students would typically take in each pathway are 
shown in Table 1. 

Table 1 

A Study in Three Phases 

I conducted using a qualitative methodological approach in three phases. In Phases 1 and 2, a general 
trigonometric representation network was developed using data gathered from: (a) interviews with two 
experienced teachers - one from secondary school, who has developed materials for the teaching of 
trigonometry, and one from college, who teaches mathematics and is considered an expert in electrical 
engineering; and, (b)an analysis of two mathematics textbooks selected for their focus on the post-secondary 
classroom and trigonometry.The two textbooks that were used in Phase 2 were: Trigonometry by Young 
(2007) and Precalculus: Mathematics for Calculus 4th edition written by Stewart, Redlin, and Watson 
(2002). The textbooks are published by different companies; both are written for the post-secondary student.

In Phase 3, I investigated trigonometric representations offered in college and secondary school mathematics 
textbooks; I then used the general representation network to analyse these representations. The college 
textbook chosen for this study was Basic Technical Mathematics with Calculus authored by Washington 
(2005); this textbook was used at the college where the experienced instructor is employed. In general, this 
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textbook is typically used in Ontario’s electrical engineering technology programs. A list of the secondary 
school textbooks used in this phase is found in Table 2. 

Table 2 

Research Results 

The General Representation Network of Trigonometry

From Phases 1 and 2, a general representation network of trigonometry was developed (Figure 1). The 
network was developed as a pedagogical network and not a conceptual network. That is, the network was 
not designed to include all mathematical concepts that provide theoretical underpinnings for trigonometry, 
but to be comprehensive with respect to external trigonometric representations and concepts used in 
secondary school college preparation pathways, and in a selected first year college mathematics courses. Six 
conceptual domains were determined from an analysis of the data to comprise the representation system of 
trigonometry – the right triangle, the trigonometric ratios, the trigonometric functions, the unit circle, the 
sinusoidal waveform, and the directed ray situated on the xy-plane (or vector). These domains are shown in 
grey on the figure. During this process, I noted that the table representation was integral to the trigonometric 
functions representation; it also served as a connecting node to the sinusoidal waveform representation. 

The Trigonometric Representation Networks by Pathway 

In Phase 3, trigonometric representations and their development were compared and contrasted with the 
general representation network resulting in three pathway networks, one for each secondary school pathway.
These three networks provided a visual instrument to analyse representations that are discussed in the 
secondary school and college sectors. In each pathway network, those representations and connections 
between representations that are common to the secondary school pathway and the college textbooks are 
shown in grey with solid bars. Solid lines indicate representations or connections only common to the 
secondary school textbooks in that pathway. Dotted lines indicate a representation or connection not found 
in the general representation network. 

From an analysis of the network for Pathway 1 (Figure 2), few representations needed to develop 
trigonometry at the college level were identified. In addition, one set of symbols and notations was used in 
secondary school compared to multiple notational forms used in the college textbook. All angles were 
identified in degrees; radian measure was not used, as it is in the college textbook. The only representation 
domains used in this pathway network are the primary trigonometric ratios and the right triangle. In contrast, 
the college representations, in order of introduction in the college textbook, included the vector, the right 
triangle, the trigonometric functions, tables, and the sinusoidal functions. 

On the other hand, the networks for Pathways 2 and 3 include representations that support many 
trigonometric concepts taught in a college technology program (Figures 3 and 4 respectively). Most 
instances of the supporting representations are presented in the Grade 11 university/college textbook. For 
example, this textbook is the only textbook that refers to the trigonometric functions; this textbook also 
makes reference to the definition of a function and its relationship to independent and dependent variables. 
The college textbook does not refer to trigonometric ratios; rather, it presents them as trigonometric 
functions regardless of the visual representation used to model them (e.g., vectors, right triangles). 

However, textbooks in Pathways 2 and 3 do not introduce the right triangle representation in the form shown 
in Figure 5, which is used heavily in the Washington textbook – and consistently in college applications for 
solving a right triangle (i.e., finding the lengths of all three sides), and the size of all three interior angles. 
Radian measure is not used in the angle measurements. There is no appreciable difference between the 
representation networks for Pathways 2 and 3. The only addition to the representation network for Pathway 
3 is the inclusion of the quarter circle. This representation is used to develop the sine and cosine ratios for 
acute and obtuse angles in degree measure. 

Figure 5 
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The college textbook does not introduce trigonometry through the right triangle representation, a 
representation familiar to in-coming students; rather, the textbook uses the vector model. Even students, 
who have worked with the unit circle representation in secondary school, may find it difficult to understand 
the vector approach because they have not met vectors. Interestingly, the expert post-secondary resources by 
Stewart, Redlin, and Watson (2001) and Young (2007), use the circle model to introduce trigonometric 
functions and subsequently the sinusoidal waveform. In contrast, the secondary school textbook uses the 
semi-circle to introduce trigonometric functions while the college textbook does not use the circle model. 
Therefore, a potential gap and learning opportunity existsin the trigonometry learning trajectory as students 
transition to college mathematics with respect to inconsistent connections with the vector and unit circle 
domains. 

Use of Technology 

Dynamic software is used extensively in some secondary school textbooks to develop the right triangle 
representation, but not for other representations. Investigations using The Geometer’s Sketchpad® were 
used to explore features of similar triangles and relate these features to the trigonometric ratios. Other 
representations were not developed in this manner. Current research reinforces the importance of dynamic 
software to facilitate student learning in general (NCTM, 2000). This study found four examples where 
dynamic software was used to develop representations: Grade 10 applied and academic textbook 
investigations to explore similar triangles, the tangent ratio, and the sine and cosine ratio; Grade 12 college 
textbook investigations to develop the sine and cosine laws; and, a Grade 12 college technology textbook 
investigation to explore the relationship for acute and obtuse angles. The college textbook did not use any 
dynamic software or other forms of investigations to facilitate trigonometry learning. 

Implications for Practice 

This study identified potential disconnections in regard to representations used to teach trigonometry across 
two educational sectors. From these results, it is evident that steps could be taken towards reducing the gap 
between secondary school and college in the learning of trigonometry. The study would suggest the 
following recommendations related tothree key problems identified in this study. 

Coordinate Curriculum across Secondary School and College Sectors 

Since college technology programs, notably the electrical engineering technology program, are heavy in 
trigonometry, it is important for students to arrive at college with some preparation in trigonometry; this 
research has uncovered discontinuities between levels. For instance, according to this research, most 
students arrive at college with knowledge of the right triangle representation, but the selected college 
textbook begins with a vector approach for which students have no background. In addition, students taking 
the applied stream pathway (i.e., Pathway 1), and students at college are not introduced to the unit circle 
representation – a fundamental representation used to model harmonic motion, electrical current, and 
periodic behaviour to name a few.  

These observations, and others, were identified from using the representation network of trigonometry. 
Analyses using this network have the potential to ensure a coherent curriculum between educational sectors 
in two ways: by identifying curriculum concepts shared between educational sectors and gaps in curricula; 
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and, by informing classroom teaching to build on common concepts and implement teaching strategies to 
address gaps. Thus, curriculum planners at the two levels need to coordinate how concepts are sequenced 
since discontinuities can adversely affect learning and the successful transition to college mathematics. 

Bridging Gaps through Textbook Coordination

The secondary curriculum effectively sets out the representation domains, such as the right triangle, the 
trigonometric ratios, the trigonometric functions, the unit circle, and the sinusoidal waveform domains.The 
vector domain is not included in the curriculum for college bound students; as such, the secondary textbooks 
did not include vectors. Nonetheless, textbook writers could have some flexibility with the configurations of
representations within a domain such as labelling of axes and sides, use of Greek letters or not, and 
developing connections between domains that are introduced in a particular course. In order to achieve this 
goal, teachers from both educational sectors should advise publishing companies regarding such 
inconsistencies in content and pedagogy. 

Emphasize Appropriate Course Selection in Secondary School 

In this study, the college textbook assumed that students had met topics such as the secondary trigonometric 
functions, and the inverse trigonometric functions, and had experience with conventions such as Greek 
letters, subscripts, radian measure, and specific terminology. The study showed that some of these topics 
were not addressed by any secondary course, and others were only addressed in certain pathways. This 
underscores the need to coordinate curriculum between college and secondary school, but it also highlights 
the importance of ensuring that students heading for college technology enrol in appropriate pathways.  

Institute an Investigative Approach in College Courses 

The study revealed the pervasive role of technology in trigonometry learning. These findings suggest that 
many students may have difficulty learning trigonometry in college courses for electrical engineering 
technology – and potentially in other technical mathematics courses – unless the textbooks for their 
programs address the need for a cohesive presentation of trigonometry representations. Therefore, the idea 
of using an investigative approach in college should be explored. In particular, investigations using 
technology to capture the dynamic features of sinusoidal waveforms and the unit circle are warranted. 
Continuation of the investigative approach with which students are familiar would provide a more 
comfortable transition to college mathematics and active engagement in the learning process of new 
concepts. 

Conclusion 

This research found gaps and omissions in a coherent pathway for students learning trigonometry between 
secondary school and college. These curricular discrepancies have the potential for being sources of 
difficulties for students in college programs. If these discrepancies are not addressed, students will continue 
to struggle. As a result, many students may prolong the fulfillment of or ultimately abandon their chosen 
educational and career goal. Not only would this be tragic for them as students, but this could lead to a delay 
or loss in skilled workers so critical for industries in the engineering field today. 

1 For the purposes of this study, a secondary school pathway is defined as a progression of secondary school 
mathematics courses that prepare students for college programs. 
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