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This paper examines the way two 10th graders cope with a non-standard 
generalisation problem that involves elementary concepts of number theory 
(more specifically linear Diophantine equations) in the geometrical context 
of a rectangle’s area. Emphasis is given on how the students’ past 
experience of problem solving (expressed through interplay among 
different modes of thinking and actions that show executive control and 
decision-making skills) supported them in their route towards 
generalisation.  

Generalisation according to Mason (1996) is “a heartbeat of 
mathematics” (p.74) and mathematical thinking takes place only when the 
students work at expressing their own generalisations. Even though there 
are numerous studies on generalisation, we agree with Sriraman (2003) that 
there is a lack of research on generalisation in the context of higher-order 
mathematical processes such as problem solving at high school-level ages, 
and this is why this paper focuses on this perspective. More specifically our 
thesis is that modelling problem-solving situations into generalisation tasks 
related to number theory is useful for learning mathematics and includes 
two stages: modelling and solving the number theory task that emerges. On 
the one hand, solving generalisation tasks dealing with number theory 
serves as a tool for developing patterns, as a vehicle towards appreciation of 
structure, as a gateway to algebra, and as a rich domain for investigating 
and conjecturing at any level of experience (Zazkis, 2007). Despite their 
significance, number theory-related concepts are not sufficiently featured in 
mathematics education. Consequently, many issues related to the structure 
of natural numbers and the relationships among numbers are not well 
grasped by learners (Sinclair, Zazkis, & Liljedahl, 2004). On the other hand, 
according to Mamona-Downs and Papadopoulos (in press), when students 
have an accumulated experience in problem solving they can affect changes 
in approach and are able to take advantage of overt structural features 
appearing within the task environment. Moreover, students with experience 
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in problem solving can show a deeper understanding of the nature of 
mathematical generalisations (Stacey, 1989). 

In this paper, an extended version of a paper presented in CERME-6 
(Iatridou & Papadopoulos, 2010), we follow two 10th graders (15-year-olds) 
during their effort to cope with a non-standard generalisation problem-
solving activity relevant to elementary number theory concepts. Both 
students had experience in problem solving due to their participation in a 
project which lasted for three years (from the 5th grade to their 7th grade) and 
emphasised problem-solving techniques relevant to area. This project 
conducted by Mamona-Downs and Papadopoulos (in press) addressed 
technique elaboration associated with a single concept, that is, area, leaving 
open the issue of addressing other concepts or working in other domains in 
the same sort of spirit. The current case is interesting since it displays 
executive control skills related to the way the students proceed when they 
have to work on a new domain and to the handling and establishment of a 
“model” that could lead to the generalisation. We explore the interplay 
between students’ approaches during their problem-solving path towards 
generalisation and at the same time refer to the actions of the students 
concerning decision making and executive control. In the next section we 
present a review of the relevant research literature that constitutes our 
theoretical framework concerning generalisation, number theory and 
problem solving. We then present the task and describe the students’ 
backgrounds, the procedure of the study, and our data collection and 
analysis. Then we describe the problem-solving approaches followed by our 
students (Katerina and Nikos). These are followed by a discussion section 
trying to shed light on how these two axes (i.e., the interplay and the control 
issues) facilitate generalisation. We end with the conclusions section. 

The Route Towards Algebraic Generalisation ... 
The ability to generalise has been considered by Krutetskii (1976) as one 

of the building blocks of mathematical structure. This ability could refer to 
mathematical objects, relations and operations as well. But what exactly is 
generalisation? Polya (1957), viewed generalisation as a gradual “passing 
from the consideration of one object to the consideration of a set containing 
that object” (p. 108). According to Polya there is a tentative generalisation 
which facilitates understanding of the observed objects, making analogies, 
and testing special cases. However, after that, follows a finer generalisation 
which could be considered as final only when a mathematical proof takes 
place. Polya refers to these types of generalisation, respectively, as induction 
(related to generalisation) and mathematical induction (related to rigorous 
proof). Harel and Tall (1991) define generalisation as a process of applying a 
given argument in a broader context, and they discriminate between 



Modelling Problem-Solving Situations into Number Theory Tasks 87 
 

 

expansive, reconstructive, and disjunctive generalisation. For Kaput (1992) 
generalisation in tandem with formalisation is intrinsic to mathematical 
activity and thinking. We opt for the induction (related to generalisation) of 
Polya in combination with the approach of Ellis (2007), who refers to the 
generalisation taxonomy as a generalisation level that includes: forming an 
association between two or more mathematical objects, searching for 
similarities and relationships, and extending a pattern, relationship or rule 
into a more general structure. 

An important part of the relevant research studies concerns primary 
school students. Cooper and Warren (2008) analysed 3rd and 5th graders’ 
ability to generalise in a variety of situations using a variety of 
representations, and to switch between these representations. Stacey (1989) 
reports responses of students aged between 9 and 13 on finding and using 
patterns in linear generalising problems. Amit and Neria (2008) focused on 
the generalisation methods used by 6th and 7th graders in solving linear and 
non-linear pattern problems. In a similar spirit, we find results in the work 
done by Becker and Rivera (2004), Carraher, Martinez, and Schliemann 
(2008) and Ishida (1997). We could mention much more of the existing 
studies but since our interest is in secondary school students (15 years old) 
we will restrict ourselves to presenting analogous studies concerning similar 
ages. Thus, refer to the work of Balacheff (1988) who, working with 13-14-
year-old students using generalising patterns (the number of diagonals of 
any polygon), found that most students made conjectures about generality 
by looking at only a few cases (relevant findings found in Cooper and 
Sakane, 1986). Lee and Wheeler (1987), working with 10th graders on 
generalising linear and quadratic problems, found that the students in 
general did not check their generalisations in order to see whether they were 
correct in particular cases. Rico (1996), working on the same topic but using 
three symbolic representational systems (figures, decimal number 
progressions, and arithmetic number sequences), found that the students 
used the numeric patterns to make generalisations rather than analysing the 
diagrams for relationships. Orton, Orton, and Roper (1999), working with 
middle school students in finding pattern generalisations, observed that 
even though the students were given a geometrical context in which to 
work, they added or multiplied to identify common differences in number 
sequences, thus ignoring the diagrams and studying the numbers instead. 
Finally, Steel and Johanning (2004) and Steel (2008) investigated 7th graders’ 
development of algebraic thinking concerning – among others – identifying 
and generalising patterns. Their findings demonstrated that the students 
recognised patterns in related problems which enabled them to describe 
generalised quantitative relationships in the problem. Even from this small 
part of the literature it can be seen that the process of generalisation lies 
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within the context of number concepts, arithmetic, and algebra. As already 
mentioned earlier, there is a lack of research on generalisation in the context 
of higher-order mathematical processes such as problem solving at high 
school-level ages (Sriraman, 2003), and this is why we try to focus on that 
perspective in this case study.              

... via Number Theory Tasks ... 
According to Zazkis’s (2007) plenary lecture in the International 

Symposium Elementary Maths Teaching (SEMT), 

number theory is useful for teaching and learning mathematics because it 
provides a powerful introduction to the essence of mathematical activity: It 
serves as a tool for developing patterns, as a vehicle towards appreciation of 
structure, as a context for developing proofs and as a gateway to algebra. 
(p.52).  

Unfortunately, number theory in mathematics education has not yet 
taken the place that it deserves in the Greek official curriculum as well as in 
the curricula of many countries (Zazkis, 2007). On the other hand, it is worth 
mentioning that at a research level and since Ball (1988) there has been an 
increasing interest in number theory as a means of teaching and learning 
mathematics. We could also mention here studies on topics such as 
divisibility (Zazkis & Campbell, 1996), even and odd numbers (Zazkis, 
1998), factors and divisors (Zazkis, 2000), multiples and the least common 
multiples (Brown, Thomas, & Tolias, 2002), and prime numbers and prime 
decomposition (Zazkis & Liljedahl, 2004). The majority of the 
aforementioned studies are relevant to preservice teachers. An exception is 
the work of Ginat (2006) concerning 11th and 12th graders and Kieran and 
Guzman (2006) concerning 12-15-year-olds, in a computer environment. We 
are also interested in these ages but our topic is the Diophantine linear 
equation, a topic that is completely unknown to students of secondary 
education.   

... in the Context of Problem Solving 
Polya’s well known problem-solving model consists of four phases: 

understanding, planning, implementing, and looking back. Lester (1985) 
modified it so as to include a cognitive and metacognitive component. In the 
cognitive components the four phases were relabelled as orientation, 
organization, execution, and verification, respectively. We will give 
emphasis on the execution phase which refers to monitoring progress and 
consistency of local plans and decision making; in other words, the issue of 
control in problem solving according to Schoenfeld (1985).  He described 
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thinking mathematically as developing a mathematical point of view, 
valuing the processes of representation and abstraction, and having the 
predisposition to generalise them. Generalisation is presented as a challenge 
action for early finishers during problem solving. According to Mamona-
Downs and Papadopoulos (in press), when students have an accumulated 
experience of problem solving then they can show a rich output in terms of 
accessing an appropriate heuristic, forming conjectures, verification 
processes, and assessing, exploring, and displaying executive control. Stacey 
(1989) found that students experienced in problem solving used their 
methods more consistently and showed a deeper understanding of the 
nature of mathematical generalisation. Sriraman (2003) working in the 
problem-solving setting found that although his experienced students never 
found general solutions to the problems, they did consistently work their 
way up by beginning with simpler cases that modelled the given problem 
situation. He expressed his findings in terms of orientation and organisation 
phases. This gave us the opportunity to put forward a study that would 
emphasise the execution phase of the problem-solving process, highlighting 
issues such as executive control or interplay among different 
representations.         

Description of the Study 
This paper presents the findings of a study involving two students 

trying to cope with a generalisation problem-solving task that is relevant to 
Diophantine linear equation. We posed the following problem to the 
students: 

 

The mathematical problem is: Define a set of necessary and sufficient 
conditions on a, b so that there exists a rectangle of dimensions a by b, that 
can be covered completely with tiles of dimensions 5cm by 7cm. 

Which of the rectangles below could be covered completely using an integer 
number of tiles each of dimensions 5cm by 7cm but without breaking any 
tile? 
Rectangle A: dimensions 30cm by 42cm 
Rectangle B: dimensions 30cm by 40cm 
Rectangle C: dimensions 23cm by 35cm 
Rectangle D: dimensions 26cm by 35cm. 
For each rectangle that could be covered according to the above condition 
show how the tiles would be placed inside the rectangle. 
Now, we want to cover a rectangle with an integer number of (rectangular) 
tiles. Each tile is of dimensions 5cm by 7cm. What could be the possible 
dimensions of the rectangle?  
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Figure 1. Putting tiles in a non uniform orientation. 

Look at the side of length a: If there are s tiles that are placed on it along 
their 5cm-side and r tiles that are placed on it along their 7cm-side, then a = 
5s+7r, where s and r are non-negative integers. If we start with the side of 
length b then the same reasoning applied gives b = 5s΄+7r΄, where s΄ and r΄ 
are non-negative integers. Now if c denotes the total number of tiles used, 
then the area ab of the rectangle should be 35c. Therefore 35 divides ab. 
Thus, there are three cases: i) 35 divides a, ii) 35 divides b, or  iii) none of the 
previous; however, since 35 divides ab, 7 must divide a and 5 must divide b 
(or vice versa). Consequently, a and b should satisfy one of the following 
necessary conditions: i) b = 35n, a = 5s+7r, ii) a = 35m, b = 5s΄+7r΄, iii) a = 7k, 
b = 5t (or vice versa). 

It is easy now to show that these conditions are also sufficient. In the 
first case (b = 35n, a = 5s+7r) we place s columns with 5n tiles, followed by r 
columns with 7n tiles as can be seen in Figure 1. In the second case (a = 35 m, 
b = 5s΄+7r΄) we place s΄ rows with 5m tiles, followed by r΄  rows with 7m 
tiles, and in the last case (a = 7k, b = 5t) we place k rows and t columns of 
tiles in the direction 7x5 or vice versa. 

Thus, even though the context of the task seems to be geometrical 
because of its relevance to area, a crucial aspect in solving the task is the 
implementation of a Diophantine linear equation ax+by=c where the 
unknowns x and y are allowed to take only non-negative integers as 
solutions (this is why one could equally refer to it as positive integer linear 
combinations instead of a Diophantine equation).   

This idea of an interdisciplinary approach attempting to put the 
elements of number theory on a geometrical basis (i.e., Diophantine linear 
equation and area of plane figures) can be understood if one takes into 
account the particular students’ backgrounds. Our task consists of two parts. 
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In the first part four rectangles have been carefully selected to enable the 
solver upon finishing the first part to reach the generalisation requested in 
the second part. The four rectangles have been selected so as to prepare the 
route towards generalisation. This is in accordance with Polya’s (1968) 
suggestion that generalisation starts from the simplest, most transparent 
particular case (p. 60). 

Katerina and Nikos were 10th graders who had participated in an earlier 
two-phase research project conducted by Mamona-Downs and 
Papadopoulos (in press) aiming to explore and enhance the students’ 
comprehension of the concept of area with an emphasis on problem-solving 
techniques for the estimation of the area of irregular shapes. The overall 
students’ participation in the first phase of the project gave them, on the one 
hand, sufficient content knowledge that was prerequisite for problem 
solving ancillary to the concept of area and, on the other hand, experience in 
the application of various techniques enabling them to calculate the area of 
some irregular shapes. In the second phase, all the students were challenged 
to overcome the limitations of the techniques (in the form that they knew 
them) so as to tackle new problems related to area determination, thus 
stressing the students’ command of their usage of the techniques. This led to 
a broad range of students’ activity. For instance, there were observed cases 
of students altering the task environment in some way to allow an 
application, adapting the technique to allow a solution of a particular task, 
generating a new technique from an old one, or combining two known 
techniques in tandem. Consequently Katerina and Nikos acquired 
experience in problem solving concerning area and we tried to make this 
knowledge base the starting point of their attempts in this interdisciplinary 
approach to work in a completely new domain. They were above the 
average level of their classroom and were chosen because of their lively 
involvement in the stages of the project. There was anticipation that the 
results of this case study would support more systematic future research as 
well. The conceptual framework in this work mainly lies in number theory. 
However, in the official Greek curriculum for 10th graders the only reference 
to number theory concepts is a brief one commenting on the divisibility 
rules for the numbers 2, 3, 5, 9, and 10. The case of the Diophantine linear 
equation as well as the method for its solution is completely unknown to the 
students and this lack of prior knowledge is an important parameter for this 
study. Under this perspective this task could be considered as a challenge 
for the students since the only part from their knowledge base they could 
recall was the knowledge relevant to the concept of area. 

The problem-solving session lasted one hour, without any intervention 
from the researchers. The students were asked to vocalise their thoughts 
while performing the task (for thinking aloud protocol and protocol 
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analysis, see Schoenfeld, 1985). Protocol analysis gathered in non-
intervention problem-solving sessions is considered especially appropriate 
for documenting the presence or absence of executive control decisions in 
problem solving and demonstrating the consequences of those executive 
decisions, and this minimises the interference of the researchers (the 
authors). The students’ protocols were then parsed into episodes (according 
to Schoenfeld’s (1985) proposed Framework for Analysis of Problem-Solving 
Protocols). Each episode was characterised as one of the following: reading, 
analysis, planning, implementation, exploration, verification, or transition 
(juncture between episodes). Emphasis was given to the transitions between 
episodes since these were the points at which the direction of the problem 
solution changed or the representation used by the students changed. More 
specifically, these were the points at which action at the control level or at 
the interplay between different modes of thinking might be considered (see 
questions below). These modes do not refer to a certain official term in 
mathematics education. It could be said that these modes include the various 
kinds of representations (visual, arithmetic, algebraic) as well as various 
approaches or ways of thinking. 

 The students’ efforts were tape-recorded and transcribed for the 
purpose of the paper. Their worksheets and the transcribed protocols 
constituted our data. The students were prevented from erasing their work 
and this is why we provided them with more than one worksheet. Since the 
aim of the study was to investigate how the interplay between different 
modes of thinking and decision-making actions facilitated the students’ 
problem-solving path towards generalisation, we coded the data according 
to the levels below:  

 Recording the successive movements of the students between 
different modes of thinking, and    

 Identifying the actions of the students that indicate executive 
control and decision-making skills.   

Katerina’s Path to Generalisation 
Katerina’s first criterion for deciding whether the four rectangles could 

be covered completely by the tile was based on whether the dimensions of 
the four rectangles were multiples of the dimensions of the tile. This is why 
her answer was positive only for the rectangle A (since 30=5*6 and 42=7*6) 
and negative for the remaining three. She used the quotient of their areas 
(E1/E2, where E1 is the area of rectangle A and E2 is the area of the tile) as a 
way to determine the number of the tiles required for the covering and not 
as a criterion to decide whether the tiling is possible. She then tried 
(according to the task) to show how the tiles would be placed within the 
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rectangle. The visual aspect of this action made the student realise her 
mistake and re-examine the four rectangles: 

 
K.1.23. The tiles could be placed in any orientation within the big rectangle. 
K.1.24. It is not necessary to place all of them in a similar orientation. 
 
After that she verified that the rectangle A could be covered according 

to the task’s instructions. For rectangle B she worked with an interplay 
between an arithmetical and geometrical-visual approach and she realised 
that the case of tiles with different orientation could mean that she could 
work with an “equation” since she was not able to proceed geometrically. 
This was the first time a linear combination was involved and an attempt 
was made to express her conjecture symbolically: 

 
K.1.37. It could be ….. 5x+7y=30 
K.1.38. It must be a rectangle with length of 30cm and this has to be 

expressed with some tiles placed along their 7cm-side and some 
with their 5cm-side.  

 
She was not able to express her thought using proper mathematical 

terms. Her intention was to say that this equation did not have integer 
solutions (she had excluded the case for an unknown to be equal with zero). 
Thus she decided to use terms such as “round numbers” (a primitive kind of 
symbolization) to show x and y must be positive integers: 

 
K.1.42. However, this case (the equation 5x+7y=30) is not possible…  
K.1.43. We could not have “round” numbers for x and y. 
 
For the rectangle C she decided to rely on the question of whether the 

length of the side of the rectangle could be written as a linear combination of 
the dimensions of the tile, which meant finding the solutions of the specific 
Diophantine equation. The lack of relevant knowledge in this domain forced 
Katerina to work with successive multiples of 7 checking every time whether 
the remainder of the subtraction 23-7x could be expressed in terms of 
multiples of 5 and thus apply a certain technique for overcoming this 
difficulty. This could be considered as the first step towards the solving of 
the linear Diophantine equation, since before finding all the integer solutions 
of this equation it is necessary to find a particular solution (x0,y0). Given that 
the Euclidean algorithm was not known to the students, the preferred 
method to find the specific solution was that of working by trial and error. 
Katerina followed the same line of thought for the rectangle D. The criterion 
of the linear combination was already established and by applying the 
technique of the successive multiples she found that: 



94 Papadopoulos & Iatridou 
 

 

 
K.1.67. For the side of 26cm it is necessary to have 3 tiles of length 7cm and 

1 tile of 5cm. 
 
Immediately she turned to the visualisation in order to verify that 

indeed this could be done, working however independently on each 
dimension of the rectangle D (Fig. 2). 

For the second part of the task she started with two steps that according 
to her opinion could help her: 

 
K.1.74. I will use drawings because this seems easier to me. 
K.1.76. How could I exploit the findings of the first part of the task? 
 
And she continued: 
 
K.1.77  From the first part I know that the rectangle A can be covered. It is 

30x42. 
K.1.78  and the rectangle D can be covered too. 
K.1.84  I will draw a rectangle... and there is no restriction about the way I’ll 

place the tiles. 
 

 

Figure 2. Visualizing the linear combination.  

She started by focusing on the positive cases (A, D) of the first part, 
avoiding mentioning the negative ones (B, C). In order to respond to the 
demand of the dimensions of any rectangle according to the task’s 
statement, she drew a random rectangle placing the tiles along its one 
dimension successively but in an accidental orientation (Figure 3, top). This 
was her way to guarantee the general case of “any” rectangle. 

Now she had to face the required number of tiles needed for the 
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coverage as well as to determine the rectangle’s dimensions. She rejected the 
condition of E1 being an integer multiple of E2 as the unique criterion since: 

 
K.1.87. …it might be necessary for a tile (or some tiles) to be split.      
 
Her model for finding the possible dimensions of any rectangle that 

could be covered by tiling using an area unit (tile) with dimensions 5cm by 
7cm included two cases exploiting her previous findings of the first part of 
the task. 

The first case resulted from considering rectangle A: 
 
K.1.92. If all tiles are oriented uniformly then the asked dimensions of the 

rectangle could be multiples of 5 or 7. 
K.1.93. I will make a drawing (Figure 3, bottom). 
K.1.94. It is a shape whose length is a multiple of 7 and width a multiple of 

5. 
 

 

Figure 3. The general case of accidental orientation (top)  
and uniform orientation (bottom). 

The second case resulted mainly as a consequence of the rectangle D, 
and two conditions must be satisfied: one side must be multiple of the least 
common multiple of the dimensions of the tile and the second side must be a 
linear combination of them as well. 
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K.1.96. Its length must be multiple of both dimensions of the tile 
K.1.97. that is, 35, or 70, 140, etc. 
K.1.98. whereas its width will be a sum... 
K.1.99. for example x tiles will be placed along their 7cm-side and y tiles 

along their 5cm-side 
K.1.100. This case is like rectangle D   
K.1.101. Length must be common multiple of 7 and 5 whereas width must 

be sum of tiles of which some are oriented horizontally and others 
vertically. 

 
She then tried to refine her model asking for a rule that governs the 

common multiples of 5 and 7 (i.e., of 35). For number 5 she knew the 
divisibility rule (the last digit must be 0 or 5) but she could not give any rule 
for the 7 or the 35. Finally, she finished with a recapitulation of her model 
trying to describe in a more formal way the second case: 

 
K.1.110. The rectangle in the second case should have one of its dimensions 

expressed as a common multiple of both 7 and 5 and the other one 
as a sum of multiples of both 5 and 7. 

Nikos’s Path to Generalisation 
Nikos’s first step was to interpret the statement of the problem in 

relation to the correct tiling: a) there is a rectangular region that has to be 
covered and b) the tile is a structural element of the task: 

 
N.1.5. Each rectangle must be covered and I must use an integer number of 

tiles 
N.1.6. So I could consider this tile (5X7) as a measurement unit. 
 
In his work we can distinguish a concrete line of thought. For the 

rectangle A, his criterion was (as in Katerina’s case) the proportionality of 
the sides, that is, whether the dimensions of the rectangle were multiples of 
the tile’s dimensions. We have to mention here that his way of reading the 
task was non-linear in the sense that he did not follow the instructions of the 
task in the given order. According to the task he had to answer whether the 
rectangles could be covered by an integer number of tiles and then to show 
the way the tiles would be placed in their interior. The fact is that he worked 
independently on each rectangle. When his answer was positive he 
immediately worked on the way the tiles could be placed in this rectangle. 
In case there was no proportionality among the lengths of the sides of the 
rectangle and the tile – as it happened in the rectangle B – he used the 
criterion of E1/E2 as a way to ensure a negative answer. In B this quotient 
was not an integer number and this meant that there could not be coverage 
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according to the task’s statement. As he explained: 
 
N.1.20. Because the ratio of their areas is not an integer. 
 
Now, in the rectangle C, the E1/E2 was an integer but the dimensions 

were not proportional. It is interesting to note the fact that Nikos’s decision 
about E1/E2 is justified by the fact that E2(=35cm2) is a factor of E1(=23*35), 
a property often overlooked even by pre-service elementary school teachers 
(Zazkis & Campbell, 1996). In their study and in an analogous quotient, 
teachers first calculated the product and then divided. At that point, Nikos 
asked for the linear combination that satisfied one of the dimensions (23cm) 
since the second (35cm) was a multiple of 5: 

 
N.1.24. When the area is 23 by 35, then obviously this product is divided by 

35 which is the area of the unit (tile)  
Ν.1.27. The point is the way the tiles must be placed 
N.1.29. We could have 3*7+2, 2*7+9 
N.1.34. 5+5+5+8, 4*5+3,…. 
N.1.35. For the 23 cm I can’t make any combination of 5s and 7s. 
 
In the rectangle D, he applied directly the rule of the linear combination 

that could satisfy the side of 26cm since the other one (35cm) was a multiple 
of 5. Trying to describe how the tiling would take place he initially worked 
independently on each side. However, the way the tiles are placed in one 
dimension affects the way the tiles are placed in the second. This made 
Nikos turn towards a consideration of both dimensions at the same time and 
as a result he succeeded (Figure 4). 
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Figure 4. Considering both dimensions at the same time. 

For the second part of the task the need to find the possible dimensions 
of any rectangle was translated by Nikos as a necessity to find a formula. 
Even though the task does not speak clearly about generalisation, the 
student confronted the task according to this perspective. For him, 
generalisation is equivalent with a symbolic form that holds for any 
rectangle.  

Despite the fact that the method followed in the first part could be 
considered adequate for him to give a general answer for each rectangle, he 
preferred to re-check the given rectangles B and C. It is not accidental that he 
first reconsidered the negative cases since these are the ones that must be 
avoided. 

He continued with an impressive conjecture: 
 
N.1.83. Obviously, if we want to cover a rectangle with this specific unit of 

dimensions 5 by 7, then the rectangle’s sides must be the sum of 
multiples of 5 and 7 at the same time. 

N.1.84. The case of 0*5 and 0*7 must be included in this. 
 
However, he still considered the two dimensions separately. Trying to 

determine what would be the general case for the asked dimensions of the 
rectangle, he created some arithmetical examples. 

He considered the tile 5x7 as the first of a sequence of new rectangles. 
He created a series of rectangles that is, 5x7, 5x14, 5x21, et cetera, keeping 
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one dimension constant (i.e., 5), and changing the other one obtaining  
successive multiples of 7. 

 
N.1.95. I start from the 5x7 case which obviously is the simplest case. 
N.1.96. Then I place one tile next to it and now the dimensions are 5 and 14 

(=2x7). 
N.1.97. Next I can put another tile and I can make it 5 by 21 (=3x7), and so 

on. 
 
He fulfilled the need for a linear combination for each dimension, 

without considering the fact that there is interdependence among the two 
dimensions since the area of the rectangle must always be a multiple of 35: 

 
N.1.102. We could say that a = 5x+7y (where “a” is one of the rectangle’s 

dimensions) 
N.1.103. and similarly b = 5z+7w (“b” is the other dimension) 
N.1.104. The product of these dimensions a and b will be the area. 
N.1.105. I can choose for a and b any sum of multiples. For example, 

a=5+14=19, b=15+28=43. So, the area is 19*43. 
 
Using a rectangle with arbitrarily chosen dimensions he tried to handle 

a general case. The dimensions of this rectangle were linear combinations of 
5s and 7s with arbitrary coefficients.  

Soon, Nikos realised that this was not enough: 
 
N.1.106. In that case I have for the area a number that is not divided by 35. 
N.1.107. So, 35 must divide the product a*b which is the area of the 

rectangle. 
N.1.112. Thus, a=5x+7y, b=5z+7w, and the quotient ab/35 must be an 

integer. 
 
He continued searching for more examples to validate his conjecture for 

the general case. 
Then, trying to establish a model that would describe all the possible 

cases he was further influenced by the four rectangles of the first part of the 
task. He considered rectangles A and D as positive cases, and B and C as 
negative ones that must be avoided. All of them contributed equally to 
generalisation. He decided that his model would include two types of 
rectangles: 

 
N.1.141. The first type concerns rectangles with one side a multiple of 5 and 

the other one a multiple of 7. So, a=5x and b=7y, which is 
a=5x+0*7 and similarly b=0*5+7y. 

N.1.142. Consequently the area of such a rectangle divided by 35 gives an 
integer number as quotient. 
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N.1.154. And this is in accordance with the general form I conjectured 
earlier. 

 
For the second type he decided that: 
 
N.1.159. One of the rectangle’s sides will be a sum of multiples of both 5 

and 7. 
N.1.160. whereas the second side will be a multiple of 35 
N.1.171. that is a=5x+7y and b=35z 
N.1.172. I think that these latter conditions outline the most general form 

for the dimensions of any rectangle able to be covered with tiles 5 
by 7. 

 
After that, Nikos applied this most general form for each of the four 

given rectangles to check its validity. Furthermore, he made clear that the 
first type of rectangles could be incorporated in the second: 

 
N.1.188. … to incorporate the first type which essentially is a special case of 

the second more general type … 
 
Finally, Nikos refined his model determining the circumstances that do 

not allow a rectangle to be covered according to the task by giving a certain 
counterexample: 

 
N.1.213. The second side must always be multiple of 35 and it can be 

constructed using either 5s or 7s. 
N.1.218. This is the only solution because 35 is the least common multiple of 

5 and 7. 
N.1.219. This means that it is not possible to have a rectangle for which both 

its dimensions are linear combinations of 5s and 7s. 
N.1.220. When I say that a is a linear combination of 5s and 7s, I mean that 

a=5x+7y but not a multiple of 5 or 7. 

Discussion 
In relevance to our research questions we could make some comments 

on our fieldwork. 

Interplay among Different Modes of Thinking 
The task was designed so as to allow solvers to move between different 

modes of thinking (i.e., different kinds of representations or different 
thinking ways and approaches). According to Douady and Parzysz (1998) an 
interplay between these different modes is caused during the problem-
solving process. They claim that the effort of the solver to reach the solution 
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results in the co-relations of these modes as well as in the usage of some 
tools that each of them employ. Additionally “...this interaction provides 
new questions, conjectures, solving strategies, by appealing to tools or 
techniques whose relevance was not predictable under the initial 
formulation...” (p. 176).  The flexibility in the transition from one form of 
representation to another could be considered as an aspect of students’ 
mental flexibility, as can be found in Amit and Neria (2008). In their work the 
authors present the students’ shifting from graphical representations to 
numerical and later to verbal and symbolic ones for the sake of the 
continuation of the solution process. During their attempts to solve the 
problem, our students worked in tandem with two pairs of modes. The first 
pair included the arithmetical mode and visualisation. Both students started 
arithmetically even though the context of the task was relevant to area, 
which is geometrical. From the very beginning Katerina used the visual 
aspect as a tool. She started arithmetically but when she was unable to 
proceed with numbers she preferred to make drawings that would help her 
(K.1.74). In the same spirit sometimes she moved from the visual context to 
algebra. At some point she acknowledged that it is not necessary for the tiles 
to be placed with the same orientation (K.1.23-K.1.24). However, she was not 
able to proceed geometrically and she preferred to turn to algebra asking for 
an equation (K.1.37). Nikos did not choose to work with this pair of modes. 
He mainly worked arithmetically and he turned to the visual aspect only to 
show the way the tiles could be placed in the interior of the four rectangles 
in the first part of the task. This moving between representations, among 
other things, reveals the mathematical structure underlying the task, as has 
been shown by Polya (1957) or Mason, Burton, and Stacey (1982). However, 
what is interesting here is that the students used this interplay as a tool to 
overcome difficulties in their problem-solving process. Whenever they got 
“stuck” they tended to turn to another representation, one that was more 
suitable to cope with the certain difficulty.  

The second pair of modes has to do with the way students dealt with the 
dimensions of each rectangle. Working with the first mode (arithmetical 
mode), dimensions were considered by the students separately as two 
unconnected objects. Thus, they made calculations (they summed, 
multiplied, divided) to determine the way the tiles should be placed in one 
dimension. In the second mode (geometrical mode, relevant to area) the 
dimensions were interdependent. The fact is that the way the tiles will be 
placed in the first dimension influences the way the tiles will be placed in 
the second dimension. Working independently in two dimensions does not 
guarantee that the total area of the rectangle will be integer multiple of 35 
which is the tile’s area. Both students made successive movements between 
these two modes. Their initial approach was to work separately for each 
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dimension. This finally resulted in making the connection concerning the 
interdependence of the two dimensions. For example it is clear that Nikos 
(N.1.102-N.1.112), working separately on each dimension, produced a 
rectangle that could not be covered with integer number of tiles since its area 
was not a multiple of 35. Therefore, it is interesting to see how the students 
drew on these modes of working in their attempts to coordinate the 
interrelationships between height and breadth when generalising their 
solutions from specific examples. This interplay constitutes an effective tool 
in their problem-solving tool-bag and not merely the key for solving the 
problem.    

As a consequence of this interplay emerges – for Nikos in particular – 
the issue of putting forward a set of conditions (N.1.112) that are evidently 
realised as being necessary and later an equivalent set of conditions (N.1.172) 
that are seen as sufficient (because the covering of the relevant rectangles can 
be explicitly constructed). 

Executive Control and Decision-Making Issues 
Both students had an accumulated experience in problem solving and 

consequently we anticipated that this could contribute to a successful 
generalisation since the ability to generalise is not an exclusive inherent 
attribute. On the contrary, as Sriraman (2004) claims, it can be developed via 
certain experiences that allow students to monitor and reflect on their work 
and this will finally enable students to become capable of making 
generalisations. We share Sriraman’s perspective that this ability for 
generalisation could be the result of certain mathematical experiences. In 
this study we are more specifically interested in the part of the problem-
solving experience that is relevant to executive control and decision-making 
issues. “Executive control” and “decision making” constitute in general the 
issue of control in problem solving. Executive control is concerned with the 
solver’s evaluation of the status of his/her current working vis-à-vis the 
solver's aims. In Schoenfeld’s (1988) words: “there is a feedback loop that 
consists of monitoring one’s actions on line, assessing progress, deciding 
whether change needs to be made, and taking action if the situation is 
deemed problematic” (p.67). This requires mature deliberation in projecting 
the potential of the present line of thought, along with an anticipation of 
how this might fit in with the system suggested from the task. In other 
words, the solvers monitor and assess both the state of their knowledge and 
the state of the solution and avoid the kinds of “wild chases” that often 
guarantee failure in the evolution of the solution.  

The students realised many actions that indicate interesting executive 
control and decision-making skills. This was probably connected with their 
past experience in problem solving as a result of their participation in the 
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specific project. Katerina rejected her initial approach, which was based only 
on the criterion of proportionality between the rectangle’s and the tile’s 
dimensions, because her turn to visualisation made her realise that it was 
not necessary for the tiles to be placed in a uniform orientation (K.1.23-
K.1.24). This turn was in effect an important act of control. The task’s 
instructions did not give any direction concerning the way the tiles could be 
placed inside the rectangle. It was up to her to interpret correctly the 
instructions. When she tried to solve the Diophantine equation she applied 
the technique of the successive multiples according to which if one has to 
solve the equation ax+by=c he/she starts with positive multiples of a and 
then examines whether c minus ax can be expressed in terms of multiple of b 
or vice versa (i.e., one starts with multiples of b) (K.1.67). This is an act of 
control as well since the solving of the equation was related to the task’s 
limitation of using an integer number of tiles without breaking any of them. 
When Katerina decided to deal with the second part of the task her first 
thought was to exploit her previous results (K.1.76) which is in accordance 
with Polya’s: “Can you use the result?” (Polya, 1957). Moreover, an 
important act of control was the “model” she proposed for estimating the 
possible dimensions of any rectangle that could be covered with an integer 
number of tiles according to the statement of the task (K.1.92, K.1.110). She 
exploited her previous findings (the four rectangles of the first part), and 
progressively she established this “model” checking step by step its 
accordance with these rectangles and also with examples generated by 
herself. The choice of these examples depends on the specific context in 
which the task is set and one has to be cautious because not every set of 
examples will facilitate a successful generalisation. There are some features 
of examples that help more than others as a means towards generalisation 
(Zazkis, Liljedahl, & Chernoff, 2008).        

Nikos also made an analogous proposition of a “model.” He also relied 
on the four rectangles of the first part of the task. The steps followed by his 
line of thought reveal presence of control:  

First look if there is proportionality among the dimensions. See also 
whether E1/E2 is not an integer. In that case the rectangle cannot be 
covered with integer number of tiles and the answer has to be negative. It is 
not necessary always to make the long division E1/E2. Instead, see whether 
E2 is factor of the E1(N.1.24). Now if there is not proportionality among 
dimensions and E1/E2 is an integer, then construct the necessary 
Diophantine equation and apply a strategy to find integer solutions.  

However, it was not enough for him just to establish a model. After 
finishing the description of his generalisation model he checked its 
consistency against particular examples. This is important given that in a 
study conducted by Balacheff (1988) (in a slightly different context, that of 
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patterns and generalisation) concerning 13- and 14-year-old students it was 
found that most made conjectures about generality by looking at only a few 
cases. Obviously, we cannot draw conclusions since we have only two 
students in our case study but we have evidence from an ongoing study 
with students without prior experience in problem solving. Our findings so 
far seem to strengthen the hypothesis that this checking of the consistency is 
rather connected with the students’ prior experience in problem solving, 
thus constituting a component of their problem-solving behaviour. Besides, 
the absence of efficient control behaviour would have sabotaged their 
attempts. 

Nikos interpreted the second part of the task as a question for a formula 
giving the possible dimensions of the rectangle. He seemed to be convinced 
that the generality must be expressed in a symbolic form.  

Rectangles B and C have been reported as the cases that cannot be 
covered by tiles 5X7. Since the task asks for the possible dimensions of any 
rectangle, these two negative cases served as the examples to be avoided. 
Nikos turned often to them (N.1.59 and N.1.77, 78) to ensure his 
understanding of why these examples are negative ones. He generated his 
own rectangles besides the four given ones (N.1.87) since he felt the need for 
more of them to reach the general case and trying to do this he followed two 
directions: First, he kept constant the length of one side while changing the 
length of the other one by successive multiples, thus checking a variety of 
cases (following the specific rule of the technique of successive multiples). 
Secondly, he translated the general case of “any” as placing the tiles in a 
random orientation (horizontally or vertically). He considered that he could 
reach the general case by checking a random and “complicated” case 
(N.1.123). 

This continuous checking of their steps in the problem-solving 
procedure that both students showed is especially significant as an act of 
control since students do not usually check their generalisations (Lee & 
Wheeler, 1987; Stacey, 1989).  

A capable problem solver recognises a correct approach and insists on it. 
This evaluation of a specific approach could also be considered as an act of 
control. Nikos recognised the applicability of the linear combination and 
used it to check the plausibility of his answers according to task conditions 
(N.1.154). This frequent turn to the tasks’ instructions was a common pattern 
for both students. However, perhaps the most important act of control on 
their behalf was their effort to refine their model regardless of whether they 
succeeded. Katerina tried without success to achieve a condition for the 
second side to be a common multiple of 5 and 7. Nikos did manage to refine 
his “model” determining whether it is impossible for a rectangle to be 
covered according to the task’s requirements (N.1.219). He did that by 
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asking for a counterexample. This action of the student could be considered 
as especially important since according to the literature students usually do 
not think a counterexample to their generalisation is important (Cooper &  
Sakane, 1986) or they tend to doubt the data when a counterexample is 
uncovered (Stacey, 1989). 

While negotiating the issue of control behaviour in this subsection, the 
mathematics of the protocols were presented and commented on in tandem 
with the problem-solving features of the students work. However, it would 
be worth making effort to distinguish and present them in a more systematic 
way. In Table 1 the two columns correspond to these two aspects of the 
students’ work connecting every aspect of the problem-solving process 
(control features) with the mathematical part of the problem’s solution. 

Table 1 
Mathematics of the Protocol and General Problem-Solving Features  

          Problem-solving features             Mathematics of the protocol 

Rejecting a solution path (realising 
the uniform orientation is not 
required) 

Proportionality of the lengths of the 
rectangle and the tile sides is not 
sufficient 

Applying techniques (working 
systematically in trial and error) 

Obtaining a particular solution for 
the linear Diophantine equation 

Exploiting previous results Obtaining the general case 

Generating examples Reaching progressively 
generalisation 

Checking against examples Ensures validity of the 
generalisation model 

Recognising a correct approach Linear combinations are used for 
verifying that the arithmetical data 
are in accordance with the task’s 
statement 

Describing sequence of steps Determines whether a specific 
rectangle could be covered with an 
integer number of tiles according to 
the statement of the task 

Refining model (looking back) Asking for counterexample 
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Conclusions 
In this work we tried to explore students’ routes towards generalisation 

in the problem-solving context putting elements of number theory 
(Diophantine linear equation) on a geometrical basis (area of plane figures). 
The students’ ways of working were examined taking into account a) 
students’ accumulated experience in problem solving related to the concept 
of area and b) the fact that this domain was completely new and students 
had no prior experience in number theory. More specifically we tried to 
explore how the interplay among different representations and students’ 
activities that show executive control and decision making supported their 
effort to make generalisations. 

We found that both of our students were able to apply this interplay 
among two pairs of modes. In the first pair (arithmetical-visual) this 
interplay was used as a way to overcome difficulties about how to proceed 
or verifying the validity of an argument. In the second pair of modes one 
mode (arithmetical, working on one dimension) was indicative of a surface 
understanding of the structural elements of the task but it seemed that 
finally the students did show a deeper understanding of these elements 
through the other mode considering both dimensions at the same time 
(geometric, interdependent dimensions). 

As far as the executive control and decision-making skills are concerned, 
we found that despite their age, these 15-year-old students showed 
considerable performance in relation to the task’s requirements on the one 
hand, and the specification of the “model” they proposed for solving the 
task on the other hand. They were able to insistently explore promising 
perspectives while abandoning other ones on the basis of how these fit to the 
task’s requirements or their potential contribution to the problem’s solution. 
They developed certain techniques and established “models” that described 
the situation and facilitated the solution, at the same time checking their 
validity or their accordance with the task’s instructions step-by-step. Equally 
important was their ability to generate examples and ask for 
counterexamples.  

Last but not least we must refer to the students’ decision to use a kind of 
symbolic language in order to make the distinction between the two types of 
rectangles. Algebraic symbolism according to Mason (1996) is the language 
that gives voice to algebraic thinking, the language that expresses the 
generality, but symbolic description does not necessarily entail the use of 
letters. Even though our students did not employ a formal way of using 
letters as a vehicle of symbolisation, the invention of terms such as “simple” 
rectangles and “complex” ones is a form of verbal symbolisation and this is 
an indication of symbol sense which actually is the essence of algebraic 
thinking (Arcavi, 1994). In his paper Arcavi describes symbol sense as the 
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ability to understand how and when symbols can and should be used to 
display relationship and generalisations.   

In conclusion we would like to refer to some final remarks that 
emphasise the significance of our results. It is common thesis that the task 
design is a crucial parameter for teaching and learning algebra at every level 
so, in reference to our work, we could claim that the setting of modelling 
problem-solving situations into number theory tasks allows students to: 

 
 transfer previously-acquired knowledge about problem solving 

to other concepts (i.e., generalisation) or other domains (i.e., 
elementary number theory)  during their successful interplay 
among different modes of thinking (algebraic thinking and 
geometrical thinking); 

 construct and propose a “model” that possibly describes the 
situation and facilitates the solution; 

 generate examples that check the consistency of their model; 
and 

 generate counterexamples that result in the refinement of the 
proposed “model.”   

 
Obviously it would be an exaggeration for these conclusions to be 

generalised since we dealt with only two students and this study should be 
considered as a case study. However, these findings were encouraging 
enough to call for the design of future research on these aspects of problem 
solving that involve successful transference of knowledge about problem 
solving from one domain to another.  
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