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This paper draws on a one year study of three secondary school classrooms 
to examine the nature of student-student-technology interaction when 
working in partnership with computer algebra systems (CAS) on 
mathematical modelling tasks and the classroom affordances and 
constraints that influence such interaction. The analysis of these data 
indicates that CAS enabled technologies have a role to play as provocateurs 
of productive student-student-teacher interaction in both small group and 
whole class settings. Our research indicates that technologies that 
incorporate CAS capabilities have the potential to mediate collaborative 
approaches to mathematical enquiry within life-related mathematical tasks. 

There has been interest by educational researchers and curriculum 
developers in the use of both mathematical modelling and digital 
technologies to enhance the learning experiences of students in secondary 
mathematics classrooms for at least the past two decades. Mathematical 
modelling – formulating a mathematical representation of a real world 
situation, using mathematics to derive results, interpreting the results in 
terms of the given situation and if necessary, revising the model – is a 
significant element of the senior mathematics syllabuses in Queensland, 
Australia, and appears, as applications of mathematics, in the curriculum 
documents of most other Australian states. The need to make use of digital 
technologies in learning mathematics is now included in most state 
curriculum documents within Australia and is increasingly apparent in 
curricula internationally. Recently, Computer Algebra System (CAS) 
enabled technologies have begun to make an impact on teaching and 
learning practices, most notably within Australia as part of the Victorian 
Curriculum and Assessment Authority’s (2006) CAS active version of 
Mathematical Methods. CAS-enabled technologies not only have the 
capability to perform a wide range of mathematical procedures, such as 
function graphing, matrix manipulation and symbolic operations, but also 
the capacity to provide users with real time advice about errors as 
mathematics is done. As CAS-enabled technologies develop increasing 
acceptance in mainstream mathematics instruction, there is a need to explore 
and understand the synergies that might be developed between CAS and 
other areas of foci in mathematics education, such as mathematical 
modelling, and to identify implications of these synergies for classroom 
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practice. This is particularly important as, to date, research has usually 
lagged behind implementation of CAS active curricula (Zbiek, 2003). 

In addition, the current emphasis on the quality of interactions between 
students and between students and teachers in school mathematics 
classrooms (e.g., see Goos, Galbraith, Renshaw, & Geiger, 2003; 
Manouchehri, 2004) means that any innovation that has the potential to 
influence these interactions must be of interest to researchers and teachers 
alike. The synergy that is likely to exist between mathematical modelling 
and CAS-enabled technologies is one such innovation. While there is 
significant research related to solving contextualized problems through the 
use of the multiple representational facilities offered by digital technologies 
(e.g., Doerr & Zangor, 2000; Huntley, Rasmussen, Villarubi, Santong, & Fey, 
2000; Yerushalmy, 2000) and substantial argument to support the use of CAS 
to enhance the process of mathematical modelling (e.g., Kissane, 1999, 2001; 
Thomas, 2001), literature that deals with CAS-enabled technology mediated 
interaction in mathematics classrooms is only just emerging. The aim of the 
research reported in this article was to develop a greater understanding of 
how CAS-enabled technologies can support students’ learning when they 
are engaged in mathematical modelling tasks, including ways in which CAS 
can mediate and support productive social interaction.  

The Role of Technology in the Process of Mathematical 
Modelling 

While there are now significant bodies of literature on the use of CAS-
enabled technologies and on mathematical modelling in school contexts, 
comparatively little has been written on how technology can be used to 
enhance the processes of mathematical modelling. An examination of the 
volume produced from the 14th Study of the International Commission for 
Mathematical Instruction entitled Modelling and Applications in Mathematics 
Education (Blum, Galbraith, Henn, & Niss, 2007) for example, contains only 
one chapter out of 58 which focuses on technology use in mathematical 
modelling. This is despite acknowledgment from the editors that: 

Many technological devices are highly relevant for applications and 
modelling. They include calculators, computers, the Internet, and 
computational or graphical software as well as all kinds of instruments for 
measuring, for performing experiments etc. These devices provide not only 
increased computational power, but broaden the range of possibilities for 
approaches to teaching, learning and assessment. On the other hand, the 
use of calculators and computers may also bring associated problems and 
risks. (Niss, Blum, & Galbraith, 2007, p. 24) 

Niss et al. (2007) go on to list nine questions related to the potential benefits 
of technology to mathematical modelling and to the possible dangers. These 
questions are not addressed directly by the authors who propose them and 
are only responded to, in passing, by other authors in the volume. This is an 
indication that, while there is acknowledgement of the potential for 
technology to enhance processes associated with mathematical modelling, 
there is limited literature that addresses this issue directly. Despite this 
limitation, a number of models for the role of technology in mathematical 
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modelling have been proposed. Two of these models (Galbraith, Renshaw, 
Goos, & Geiger, 2003 and Confrey & Maloney, 2007) are presented below. 

Technology for Dealing with Routines and Mathematical 
Processes  
Based on a three year longitudinal case study of a class of students studying 
mathematics in technologically rich environments, Galbraith, Renshaw, 
Goos and Geiger (2003) provide a description of the role of technology in the 
process of working with applications of mathematics and mathematical 
modelling. In this description, illustrated in Figure 1, mathematical 
modelling is presented as a cyclic process that starts with a problem set in a 
life-related context. The problem is then abstracted into a mathematical 
representation of the contextualised situation and solved through the 
application of mathematical routines and processes. The resulting solution is 
brought into relief against the original problem to consider its fit with the 
original context. If the fit is not considered sufficient, adjustments are made 
to the model and the process repeated until a satisfactory fit is achieved. 
Galbraith et al. (2003) argue mathematical routines and processes, students 
and technology are engaged in partnership during the Solve phase of a 
problem. This view identifies the conceptualization of a mathematical model 
as an exclusively human activity while the act of finding a solution to the 
abstracted model can be enhanced via the incorporation of technology. 

 
Figure 1. Some technological and mathematical interrelationships from 

Galbraith, Renshaw, Goos, & Geiger (2003, p. 114). 
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Modelling as Transforming Indeterminate Situations into 
Determinate Outcomes 
Confrey and Maloney (2007) identify four approaches to technology in 
mathematics instruction: 

1. Teach concepts and skills without computers, and provide these 
technological tools as resources after mastery; 

2. Introduce technology to make patterns visible more readily, and to 
support mathematical concepts; 

3. Teach new content necessitated by technologically enhanced 
environments (estimation, checking, interactive methods); 

4. Focus on applications, problem solving, and modelling, and use the 
technology as a tool for their solution. (p. 57) 

While acknowledging that each of these approaches has its place, 
Confrey and Maloney regard mathematical modelling as a central goal of 
mathematics instruction. Drawing on a Deweyian definition of inquiry, they 
argue that the process of modelling is founded on two activities: inquiry and 
reasoning. They see inquiry as a means of gaining insight into an 
indeterminate situation – such as a loosely bound problem in the real world. 
Reasoning is the process which draws on bodies of knowledge to transform 
the indeterminate situation into a determinant outcome – a model. In their 
view: 

Mathematical modelling is the process of encountering an indeterminate 
situation, problematizing it, and bringing inquiry, reasoning, and 
mathematical structures to bear to transform the situation. The modelling 
produces an outcome – a model – which is a description or representation 
of the situation, drawn from the mathematical disciplines, in relation to the 
person’s experience, which itself has changed through the modelling 
process. (p. 60) 

The process of inquiry gives rise to observations, responses, measurements, 
interactions, indicators, methods of sampling and data collection that are 
typically mediated by various forms of technology. Confrey and Maloney 
(2007) claim that it is through the coordination of these artefacts and the 
processes of inquiry, reasoning and experiment, that an indeterminate 
situation is transformed into a determinate situation (see Figure 2). The role 
of technology in this model is many-fold. Technology can generate and 
incorporate representations which can assist in transforming an 
indeterminate situation into a determinate one. Technology also plays a 
central role in coordinating the inquiry, reasoning, and systematising that 
lead to a determinate situation. 
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Figure 2. An inquiry and reasoning approach to mathematical modelling 
from Confrey and Maloney (2007, p. 67). 

Commentary on the Role of Technology in Mathematical 
Modelling 
Both of these descriptions of the role of technology recognise the cyclic 
nature of the modelling process and the important interplay between 
exploration, conjecture, reasoning, the use of mathematical procedures and 
processes, and the validation of solutions. In both of these models 
technology can be used to deal with mathematical procedures; however, 
Confrey and Maloney (2007) suggest technology has a role to play in the 
coordination of inquiry and reasoning and, by association, interaction. What 
is not explored in this approach is the nature of the interaction between 
human participants and technology in the cycle of inquiry and reasoning. 

In the Galbraith, Renshaw, Goos, and Geiger (2003) model, technology is 
seen as a tool used to assist with the solution of a problem after a 
mathematical model is developed rather than as a tool for the exploration 
and development of a model or its validation as a reliable representation of a 
life related situation. 

The section that follows provides an outline of research into the role of 
technology in mediating productive student interaction in mathematics 
classrooms. 

The Role of Technology in Promoting Social Interaction in 
Technologically Rich Mathematics Classrooms 

While there is now an extensive body of literature related to the use of 
technology to learn mathematics, this has been principally concerned with 
the acquisition of mathematical knowledge and the advantages offered by 
the capacity of technology to present multiple representations of 
mathematical ideas as an aid to learning. Other authors (e.g., Burrill, 1992; 
Galbraith, Renshaw, Goos, & Geiger, 1999; Goos, Galbraith, Renshaw, & 
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Geiger, 2000b), however, have suggested that the most significant changes 
related to the introduction of technology into mathematics classrooms will 
be in the ways students and teachers interact. From this perspective, 
questions such as the role technology can have in mediating social 
interaction, or how technology is entwined into the fabric of a learning 
discourse in collaborative learning environments, receive greater primacy. 
There is now a growing interest in social perspectives of learning with 
technology and a number of authors have attempted to define the territory. 
Simonsen and Dick (1997), for example, in a study of teachers’ perceptions of 
students’ use of graphics calculators, conclude that this technology has a role 
to play in shifting the orientation of the classroom towards more student 
centred, discursive and exploratory approaches. The availability of 
technology alone, however, will not ensure the development of collaborative 
practices (Beatty & Geiger, 2009) and so the teacher has a vital role to play in 
mediating the type of social interaction that is regarded as collaborative 
within a classroom of learners. 

Some time ago Willis and Kissane (1989) introduced the notion of 
Computer as a Catalyst. In this mode, the computing environment is used as 
a means of provoking mathematical explorations and discussion or to 
invoke the use of problem solving skills. This recognises the potential of 
technology to support learning-focused interaction between students and 
suggests a mediating role for technology in learning. The metaphor of 
Computer as a Catalyst is further extended by Goos and Cretchley (2004) in 
a review of the role of technology in education in the Australasian region. In 
their view, the computer is a tool that can be used as a catalyst for 
visualisation, higher order thinking and collaboration.  

The use of tools to mediate higher order thinking and collaborative 
learning is consistent with a socio-cultural perspective on intellectual 
development where learning takes place via social interaction and is 
supported by cultural artefacts or physical tools. The inseparability of 
cognitive activity from both the process of learning within the group and 
from the tools that help mediate the activity is consistent with a Vygotskian 
view of the social nature of learning and also with Pea’s (1985, 1987) 
description of the role of cognitive tools in distributed cognition. This view 
considers humans are elements in a reasoning system that includes human 
minds, social contexts and tools. Digital tools, such as computers and 
graphics calculators, can be used to mediate productive collaborative 
interaction even though these tools have not been specifically designed to 
support collaboration (Beatty & Geiger, 2009; Geiger, 1998; Geiger & Goos, 
1996; Goos, Galbraith, Renshaw, & Geiger, 2000a, 2000b; Trouche, 2005). 
Studies which exemplify the use of technologies designed primarily as 
mathematical tools but are used to mediate collaborative practice include 
those of Geiger and Goos (1996) and Manouchehri (2004).  

In a case study designed to investigate the social and material mediation 
of computer-based learning in an upper secondary mathematics classroom, 
Geiger and Goos (1996) found that interaction was both tool and task 
dependent. In that study, the computer was intended to act as both a tool, in 
enabling students to generate and manipulate data in a spreadsheet, and as 
a catalyst, in provoking exploration of the patterns that emerged from the 
data. However, it was found that the extent to which such exploration 
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occurred depended on the type of task the students were given. Differences 
in the social organisation of students’ work, identified in the function of 
their talk and the structure of their interaction, were associated with 
differences in task focus. A focus on process, rather than products or means, 
was found to encourage collaborative discussion. Results implied that 
computer environments do not automatically facilitate peer interaction and 
that careful attention needed to be given to the structure of tasks if they were 
to elicit high-level verbal reasoning. Students were most likely to interact if 
there was a genuine problem to be solved, consistent with the findings of 
research on talented students summarised by Diezmann, Faragher, Lowrie, 
Bicknell and Putt (2004). This finding is of particular relevance to the current 
study because the nature of mathematical modelling ensures students will 
be challenged by authentic, loosely bound problems. 

In a study involving undergraduate preservice teachers using NuCalc, 
an interactive algebra application, Manouchehri (2004) observed students’ 
mathematical discussions displayed greater complexity while using NuCalc 
than when they used no mathematical computer application. Manouchehri 
identified the following four ways that the software supported discourse: 

1. by assisting peers in constructing more sophisticated mathematical 
explanations; 

2. by motivating engagement and increased participation in group 
inquiry; 

3. by mediating discourse, resulting in a significant increase in the 
number of collaborative explanations constructed; 

4. by shifting the pattern of interaction from teacher directed to peer 
driven.  

Further, Manouchehri concluded that because of the immediacy of feedback 
to students, the software also supported a culture of conjecturing, testing 
and verifying, formalising mathematics and collaboration and shifted the 
locus of power from the teacher to the students. 

These studies offer support for the premise that technology can play a 
role in the mediation of collaborative learning processes. The immediacy of 
the feedback provided by technology can offer enhanced possibilities for 
classrooms where conjecturing, testing and verifying mathematical 
argumentation is viewed as important aspects of learning and doing 
mathematics. These aspects are also consistent with the model for the use of 
technology in mathematical modelling proposed by Confrey and Maloney 
(2007) outlined earlier in this paper. 

The Study 
The research questions guiding the study reported in this article were: 

1. How can CAS-enabled technologies support students’ learning 
when they are engaged in mathematical modelling tasks? 

2. How can CAS mediate and support productive social interactions 
between students? 

Different aspects of the models proposed by Galbraith, Renshaw, Goos 
and Geiger (2003) and Confrey and Maloney (2007) were used as a 
theoretical framework to investigate the first research question. The cycle 
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which forms the basis of Galbraith, Renshaw, Goos and Geiger’s (2003) 
model outlines phases of activity in which a problem is specified, 
assumptions are made, a mathematical model is formulated, solved, 
interpreted and evaluated. These phases were used as a framework to 
analyse the types of activity impacted upon by CAS-enabled technologies. In 
particular, activity within and between these phases was examined for 
evidence of the influence of CAS upon the coordination of inquiry and 
reasoning that Confrey and Maloney (2007) suggest technology can enhance. 
The role of CAS in mediating social interaction within the inquiry and 
reasoning approaches employed by students was also documented as it 
relates to the cyclic model and is used to address the second research 
question. 

Participants 
The research reported here is based on data sourced from a 12 month 

study of the use of CAS-enabled technologies in senior secondary classroom 
settings. Participants consisted of three secondary mathematics teachers, one 
from a government school and two from non-government schools, one class 
of students for each teacher and a university based researcher (first author). 
Teachers were selected because of their interest in exploring the use of CAS-
enabled technologies in teaching senior mathematics and because of a 
history of effective use of mathematical modelling tasks in their teaching 
practice. In addition, all three teachers were known to be supportive of 
collaborative approaches to learning mathematics. While each teacher had 
responded to mandatory curriculum requirements by developing 
considerable experience and expertise in teaching mathematical modelling 
and the use of non-CAS technologies such as graphing calculators, there 
were differences in their facility with using CAS-enabled technologies which 
ranged from that of expert to novice. 

The three cohorts of students consisted of one Year 12 class and two 
Year 11 classes. All classes were studying Mathematics B, a subject that 
includes substantial elements of calculus and statistics. Each class was 
equipped with a set of Texas Instruments CAS-enabled Nspire handheld 
devices (at least one for each student and the teacher) and one licence for 
software that mirrored the facilities of the Nspire handheld device. These 
technologies possess all of the features of a typical graphing calculator, such 
as function and graph plotting modules, but also include a CAS capability 
that is highly integrated with other calculator facilities. Other features 
include a fully functional spreadsheet (again with CAS integrated capability) 
and a sophisticated feedback mechanism for reporting on input errors. 

Students’ experience in the use of technology to learn mathematics 
varied across the three classes. While none of the students had used the 
Nspire handhelds before the beginning of the year in which the study was 
conducted, two groups experienced substantial previous use by the time 
they were first observed by the researcher, the other group receiving very 
limited exposure. 
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Methodology and Research Design 
The data and analysis presented here concern the interactions between 

students and teachers in two different classrooms. Research into interactions 
between multiple participants and between participants and digital tools in 
an authentic classroom setting must employ a methodology with the 
capacity to accommodate educational phenomena that are situated, 
temporal and complex. Further, the nature of the classroom environment 
brings with it, in the case of this study, the prospect of unanticipated or 
emergent outcomes (Ramsden, 1997) in terms of both the usage of digital 
technologies and in the type and quality of the interactions between 
participants and technologies – thus a naturalistic research design was 
employed (Lincoln & Guba, 1985).  

A case study approach (Burns, 2000) was used to document the actions 
and interactions of the teachers and students who are the focus of this 
report. Sampling was purposive and opportune as cases were chosen for the 
capacity to illuminate and enhance understanding rather than for 
representativeness (Stake, 2005). In particular, the cases reported in this 
paper were selected because they represent independent occurrences of a 
learning/teaching phenomenon which emerged (Ramsden, 1997) during the 
course of the study.  

The researcher was responsible for classroom observations and video 
recording as well as conducting interviews with both students and teachers. 
Data collection methods included observational field notes, video and audio 
recording of small groups of students working on specified tasks, video and 
audio recording of episodes of whole class activity as well as follow-up 
individual teacher interviews, and a focus group interview involving the 
three teacher participants in the project. In the individual interviews, 
teachers were asked what they had noticed during a lesson in relation to 
students’ use of CAS during the phases of the cyclic model and also 
technology influenced approaches to inquiry and reasoning. They were also 
asked to comment on any unexpected events and to speculate on reasons for 
their occurrence. The purpose of the focus group interview was to further 
document the participant teachers’ perceptions of classroom events and the 
benefits offered by CAS to mathematical modelling and also to triangulate, 
through the teachers’ responses, the researcher’s observations, reflections 
and initial theory formation. Each class group was observed on three 
different occasions, each time for periods ranging from 45 minutes through 
to 90 minutes. On the majority of occasions, students and teachers worked 
on tasks that incorporated some element of mathematical modelling.  

Consistent with a naturalistic methodology, data collection and analysis 
were conducted simultaneously with the development of theory. In this 
case, theory is being developed for the role of CAS-enabled technologies in 
supporting student learning, within the social milieu of secondary school 
mathematics classrooms, while engaged in mathematical modelling tasks. 
This theory will expand on the frameworks offered by Galbraith et al. (2003) 
and Confrey and Maloney (2007) by specifically addressing the role of CAS 
in the human interaction involved in modelling. 

The mode of analysis employed is that of explanation building (Burns, 
2000). The explanation building process is iterative as the explanations of 
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initial observations of phenomena are formulated into theoretical 
propositions which are in turn tested, revised and refined against further 
data. Instances of emergent behaviour were documented and categorised. 
Where emergent phenomena were noted and documented, the researcher 
made use of follow-up interviews with the relevant teacher in order to 
triangulate the occurrence of the identified phenomena and to discuss 
possible explanations for what was observed (Lincoln & Guba, 1985). By 
ascertaining the participant teachers’ perspective on the event, occurrence or 
episode the researcher gathered additional evidence in favour of one 
explanation over other rival explanations. The researcher then incorporated 
the observed phenomena and explanation into an initial theoretical 
proposition. After initial theory was developed the researcher was sensitised 
to the observation of similar phenomena during further data gathering from 
participants’ classrooms which in turn initiated additional iterations of 
follow-up interviews with teachers and further revision of theory. The 
congruence between theory and observed phenomenon received further 
scrutiny during the final focus group interview which included all 
participating teachers. 

The following analysis is based on data drawn from two classroom 
episodes, which are reported as vignettes, and the focus group interview 
conducted towards the conclusion of the project. These episodes were 
chosen because they represent two instances of similar teaching/learning 
activity that occurred independently in different classrooms in different 
schools. The vignettes are developed from observational field notes on 
whole class activity, audio and video recordings of students and teachers 
working together in both small group and whole class settings and follow-
up interviews of the teachers. The analysis of focus group data is based on 
video and audio records of the focus group meeting. 

Results and Discussion 

Two Vignettes where CAS Promotes Contention 
The two vignettes reported below come from classrooms in two different 
schools – one a government school and the other a non-government school. 
The teacher in the government school had personal experience with the use 
of CAS but had not used it previously in his teaching. His students had 
begun to make use of CAS from the beginning of the year; approximately 
two months before the first vignette was documented. The second vignette 
records an episode from the classroom of a teacher from a non-government 
school. This teacher had extensive experience with the use of CAS and his 
students had been using CAS, in at least a limited way, for two years of 
schooling. These students, however, had been using the Nspire handheld for 
only two months. In both cases, the teachers challenged students to make 
use of CAS based technology as an aid to working with mathematical 
modelling problems. The analysis presented here builds on the work 
previously presented by Geiger, Faragher, Redmond, and Lowe (2008). 
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Vignette 1 
The vignette described below took place in a Year 12 (final year of secondary 
school) mathematics classroom where students were investigating the 
nature of population decay towards extinction. The teacher had set students 
the following question. 

When will a population of 50 000 bacteria become extinct if the decay rate is 
4% per day? 

One pair of students developed an initial exponential model for the 
population y at any time x, ( )xy 96.050000!=  as they believed the decay of 
the bacteria population would be exponential in nature. They then equated 
the model to zero in order to represent the point at which the bacteria would 
be extinct. Their intention was to solve this equation using CAS in order to 
find the number of periodic cycles and hence the time it would take for the 
population to become extinct. When students entered this equation into their 
Nspire handhelds, however, the device unexpectedly responded with a false 
message, as illustrated in Figure 3. 

 

Figure 3. Nspire display for the problem ( )xy 96.050000!=  

The students were initially concerned that this response had been 
generated because they had made a mistake with the syntax of their 
command. They re-entered the instruction several times and tried a number 
of variations to the structure of the command but did not consider that there 
was anything at fault with the parameters they had entered. When the 
students asked their teacher for assistance, he looked at the display and 
stated that there was nothing wrong with the technical side of what they had 
done but they should think harder about their assumptions. 

After further consideration, and no progress, the teacher directed the 
problem to the whole class. One student indicated that the difficulty being 
experienced was because “you can’t have an exponential equal to zero”. This 
resulted in a whole class discussion of the assumption that extinction meant 
a population of zero. The discussion identified the reason for the 
unsatisfactory calculator output as inappropriately equating an exponential 
model to zero and then considered the possible alternatives. Eventually the 
class adapted the original assumption to accommodate the limitations of the 
abstracted model by accepting the position that extinction was “any number 
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less than one”. Students then made this adjustment to their entries on the 
handheld and a satisfactory result was returned. 

In a follow-up interview, directly after the lesson, the researcher (R) 
asked the teacher (T1) about the episode. 

R: I saw an element of what we just talked about today when conflict was 
generated by an interpretation of the question about bacteria. Students 
developed an equation and then, because no bacteria were left, they 
equated it to zero. The calculator responded with a false message. In 
some ways you could think it was a distraction and that the procedure 
didn’t work; some kids might just give up. But on the other hand, what 
it provoked in your class was an opportunity to discuss. “Did you push 
the wrong buttons? Oh, you think you did – let’s look at the maths. 
Well your maths is right! Do you understand why it couldn’t be? Let’s 
talk about the assumption”. 

T1: Simon was one of those, he said – “no way you could get that to equal 
zero”, without necessarily understanding why. Not that he couldn’t 
solve it when it equalled zero, it was that concept he couldn’t see; that 
population couldn’t become zero. 

R: Yes didn’t need CAS to understand that, they just understood it 
because they knew their maths well enough. 

T1: Yeah we actually use the CAS to create the confrontation. 

In this excerpt, the teacher identifies the message created by the CAS – that 
the equation was false – as a mechanism for confronting a student’s lack of 
understanding of the interplay between the demands of developing an 
appropriate mathematical model and a valid mathematical expression. The 
context of the problem indicated to the students that the model should be 
equal to 0 to represent the extinction of the bacteria although, from a purely 
mathematical perspective, this was not valid. Interestingly, this conflict or 
“confrontation” was viewed by the teacher as an opportunity to promote 
productive interaction among the class, which ultimately led to the 
resolution of the problem and a broader understanding of the role of 
assumption in the mathematical modelling process. 

Vignette 2 
In this second vignette the other teacher was working with a Year 11 class on 
a unit about a variety of mathematical functions including linear, quadratic, 
cubic, exponential and power functions. During the observed session they 
were asked to work on the following task. 

The CSIRO has been monitoring the rate at which Carbon Dioxide is 
produced in a section of the Darling River. Over a 20 day period they 
recorded the rate of CO2 production in the river. The averages of these 
measurements appear in Table 1. 
The CO2 concentration [CO2] of the water is of concern because an excessive 
difference between the [CO2] at night and the [CO2] used during the day 
through photosynthesis can result in algal blooms which then results in 
oxygen deprivation and death of the resulting animal population and 
sunlight deprivation leading to death of the plant life and the subsequent 
death of that section of the river. 
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Table 1 
Rate of CO2 Production Versus Time 

Time in hours Rate of CO2 Production 

0 0 
1 -0.042 
2 -0.044 
3 -0.041 
4 -0.039 
5 -0.038 
6 -0.035 
7 -0.030 
8 -0.026 
9 -0.023 
10 -0.020 
11 -0.008 
12 0 
13 0.054 
14 0.045 
15 0.040 
16 0.035 
17 0.030 
18 0.027 
19 0.023 
20 0.020 
21 0.015 
22 0.012 
23 0.005 
24 0 

 
From experience it is known that a difference of greater than 5% between 
the [CO2] of a water sample at night and the [CO2] during the day can 
signal an algal bloom is imminent. 
Is there cause for concern by the CSIRO researchers? 
Identify any assumptions and the limitations of your mathematical model. 

Students were expected to build a mathematical model by inspecting a 
scatterplot that would then be used to determine the general form of 
function that would best fit the data. This general form was then to be 
adapted for the specific data presented in the question and used to address 
the questions at the end of the task. Students had earlier studied strategies 
for determining if a particular function type was most suited to a data set. 
Most recently, students were introduced to a technique where ln versus ln 
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plots of data sets were used to determine if a power function was an 
appropriate basis on which to build a mathematical model. This appears to 
have influenced the actions of two students as the transcript below indicates. 

R: So you are up to building the model are you?  

S1: Well we worked out a plan of what we are going to do, we are 
just putting it on paper.  

R: So do you want to tell me what the plan is? 

S1: The plan is to do the Log/Log plot of both the data to see if 
they are modelled by a power function. We have previously 
seen that the……….. 

R: So that is something you have learnt to do over time? 
Whenever you see data look like that, you check if it’s a power 
function by using Log/Log? 

S1: Yes. 

These students experienced problems with this approach, however, as the 
technique employed, in this case, meant the students tried to find the natural 
logarithm of 0. 

S1: 0.44 zero … (entering information into the Nspire device). 
Don’t tell me I have done something wrong. Dammit. 
Mumbles … Start at zero is it possible to do a power 
aggression (sic)? I don’t think so! 

This comment was in response to the display that resulted when the 
students attempted to find the natural logarithm of both Time and CO2 
output data using the spreadsheet facility of their handheld device (see 
Figure 4). Students were surprised by the outputs they received for both sets 
of calculations, that is, the #UNDEF against the 0 entry in the Time column 
and the lack of any entries in the CO2 column. In addition, an error message 
was produced indicating the results of the students’ entries were 
problematic for the handheld device. 

After a little more thought students realised where the problem lay. 
S1: Ln time is going to be equal to the Ln of actually time. Time…. 

Oh, is that undefined ‘cause it’s zero?  

S2: Yep. 

S1: Right now if I go back to my graph… Enter 

S2: If you try zero fit, it will just go crazy.  

The students eventually identified the problem with their approach and 
realised their initial assumption, that is, the best model for the whole data 
set was a power function, was at fault. Eventually, they realised it was best 
to model the data with two separate functions. 

S1: So we have fitted a linear model for the top data and then we 
fitted a power function to the bottom data given we take the 
absolute value of those the question asks, the difference 
greater than 5% we need to look at the actual CO2 produced, 
now what we have got is the rate, to go back to the actual CO2  
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Figure 4. Nspire display of spreadsheet for natural logarithm of time and 
CO2 output data. 

absorbed we need to integrate the model or both models and 
then use the percentage difference formula – predicted minus 
actual divided by actual or, in this case, night minus day 
divided by day multiplied [by] 100 to look at whether for any 
x or any t there is any percentage difference greater than .05. 

The second teacher (T2) was interviewed approximately two weeks after 
the episode described above. 

R:  One of the things that’s come out quite strongly in your 
classes, and also I noticed it with John’s as well, is there have 
been quite a few occasions where something has happened 
with the technology and it’s really provoked a discussion.  
The last time I was here the students tried to put in a 
logarithmic model and make it equal to zero and Nspire just 
said “No - not doing it!”, which provoked a discussion about 
where the problem lay.  
Today, there was a problem about the difference between a 
model developed using integration, either on the calculator or 
by hand, versus the regression model that was produced by 
doing the “area-so-far curve” which also provoked a 
discussion. Do you consciously do that or are these just 
incidental things that you just run with as they come up?  

T2:  Just as they come up, yeah. 

R:  That last one looked to me like you deliberately did it, but you 
are saying it just happened and that it was a good thing to 
follow-up. 
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T2:  Yeah basically, I mean they crop up and we call them 
teachable moments. There are things that crop up and you 
work through and you sort of think, yeah that’s pretty cool. I 
mean yeah it worked out all right.  

In this excerpt the teacher acknowledges the value of discussion that 
flows from unexpected outcomes but makes the point that he did not 
attempt to deliberately catalyse the collaborative discourse that developed 
by building in a “confrontation” into the lesson design. Despite the benefit 
that this teacher believes is an outcome of debate around a blockage to 
students’ progress, and the apparent prevalence of this type of discourse in 
his classroom, he does not believe the type of scenario described above 
should be contrived, but simply embraced when it occurs. Indeed, it may 
well be impossible to contrive such provocations for thinking. It would 
depend on particular students’ current understandings and the approach 
they take to open tasks. None-the-less, to take advantage of such instances a 
teacher must have a disposition to recognise an opportunity and the 
confidence and facility with both mathematics and technology to do so. 

Focus Group Interview 
In the final focus group interview, participant teachers confirmed that the 
productive discussion arose from instances where technology produced 
unexpected results. This can be noted in the following transcript where 
Teacher 1 commented on events during the lesson on the decay of a bacteria 
population. 

T1: It was pretty obvious to me why it didn’t work but I 
deliberately made a point of that with a student to see what 
their reaction would be. And it was a case of pretty much what 
I expected. That they just grasped this new technology Nspire 
and were so wrapped up in it that they believed it could do 
everything and they didn’t have to think too much. And so 
suddenly, when it didn’t work, it took a fair amount of 
prompting to get them to actually go back and think about the 
mathematics that they were trying to do and why it did not 
give a result ... and so forth.  

R:  ...Interestingly you didn’t just go over and tell them what to 
do. You just looked at it and said the syntax is all right – go 
and have a think about it. And they did for quite a while, and I 
don’t know if anyone sorted it out. They may have but they 
didn’t say. You then brought it back to the whole class and 
said “what’s gone wrong here?” Someone eventually said that 
you can’t have an exponential equal to zero. What happened 
out of that – you might want to fill in more – is that there was 
quite a protracted discussion about what happened. Extinction 
is zero isn’t it? So there is a little bit of a conflict between the 
way students think about it mathematically and the way it 
works in context. The context implies zero but there are other 
answers that could still make it work. So, you have to do this 
bit of a fudge and say the equation has to be equal to anything 
less than one – if it is a bacteria. 
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T1:  Even if the kids were solving that by traditional methods, they 
would still need to have that discussion. It was an issue with 
CAS that they were just expecting an instant answer and they 
didn’t want to go and think about what was really going on.  

R: What is it about CAS-enabled technologies that would be 
different to ordinary technology, in this instance?  

T1: I’ll just reiterate and say with CAS that kids are looking for the 
quick solution, the immediately obvious without looking at 
what is underlying the discussions and the decisions that they 
are making. And they assume – like I did in the second section 
that the machine can handle it, sort of thing. 

In this discussion, the teacher identifies a “blackbox” use of CAS 
(Drjivers, 2003) as the source of the impasse the students experience in 
attempting to determine when the bacteria will become extinct. That is, the 
students attempt to use the technology to solve the problem without 
engaging deeply enough with the mathematics inherent in the solution to 
the problem. While the technology has the capacity to solve complex 
equations, the display for this indeterminate case is false. The teacher 
accommodates this surprising result by taking the opportunity to explore 
both the source of the problem, from a purely mathematical perspective, and 
what adjustments are needed to find a way forward mathematically while 
remaining true to the original context. This instance exemplifies the type of 
unexpected results that can be generated by CAS-enabled technologies. The 
above discussion demonstrates such instances can be used to the advantage 
of students’ learning. It would appear this depends on the teacher having 
the disposition, mathematical expertise, technological competence and 
confidence to explore and promote students’ mathematical knowledge and 
their understanding of mathematics in context. 

Discussion and Conclusions 
The research reported in this paper provides insight into how CAS-enabled 
technologies can support student engagement with and learning through 
mathematical modelling and the role of CAS in mediating the type of human 
interaction that emerges when exploring such tasks. The findings expand on 
previous theory about the role of technology in mathematical modelling. 

One set of findings relates to the use of CAS within different phases of 
the modelling cycle (research question 1). In contrast to the role attributed to 
technology in mathematical modelling by Galbraith, Renshaw, Goos and 
Geiger (2003) the electronic output forced students to re-evaluate 
fundamental assumptions they had made within the context of the described 
problems and then to reformulate, solve, interpret and evaluate the problem 
in the light of an adapted assumption set. This means that student-student-
technology related activity takes place during all phases of the mathematical 
modelling cycle, as illustrated in Figure 5, rather than only at the solve 
juncture outlined in Figure 1. Consequently, this assigns a role to technology 
in the conceptualisation of the model rather than simply as a tool which is 
used to solve a mathematical problem after it has been abstracted. This is a 
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position more consistent with that of Confrey and Maloney (2007) who 
acknowledge a role for technology in the inquiry/reasoning cycle. 

A second set of findings is concerned with the role of CAS in mediating 
productive social interaction within the context of mathematical modelling 
activity (research question 2). In both of the vignettes described above, 
teachers found students were experiencing blockages to their progress and 
used this as a catalyst for whole class discussion in which the problematic 
issue was explored and then resolved. While these blockages were the result 
of erroneous input due to students’ gaps in mathematical understanding, or 
perhaps carelessness that stemmed from a false belief that Nspire could 
solve any equation, the unexpected set-back catalysed discussion in a way 
consistent with Goos and Cretchley’s (2004) commentary. It is important to 
note, also, that during both small group and whole class discussions, 
students themselves contributed to the generation of knowledge and 
understanding. Technology has therefore played a role in catalysing student 
participation in their own learning through small group and more public 
interactions with the teacher and their peers. 

The unexpected output on the handheld devices in both vignettes 
influenced the inquiry/reasoning cycle by confronting students with an 
unanticipated result which, in turn, provoked the rethinking of their original 
assumptions, sometimes with the guidance of their teacher, and led to an 
adjustment to their approach to solving these problems. This rethinking was 
characterised by highly collaborative modes of discourse in which 
interactions between students and between students and the teacher focused 
on the processes of conjecture, knowledge testing and validation by a 
classroom community that included all classroom participants – both 
students and the teacher. As a result, students were forced to reshape their 
early thinking to satisfy the demands of both the context and the limitations 
of their abstracted model. Thus technology, in this case, has fulfilled a more 
interactive role than simply that of a powerful computational tool – it has 
mediated interaction by producing an initially unexpected result and also 
played a part in the final resolution of the conflict through its use to validate 
alternative solutions. We would argue this is an example of where the CAS -
enabled technology provoked learning – the role of provocateur. The way in 
which technology mediated discourse, facilitated collaborative interaction 
and shifted the locus of interaction from the teacher to the students is 
consistent with the findings of Manouchehri (2004). 

The provocations also represent opportunities for teachers to gain an 
awareness of students’ misconceptions and then to provide appropriate 
scaffolding in order to move students forward in their understanding of the 
issue that was proving problematic. As reported above, both teachers used 
the consternation generated by the error messages recorded on students’ 
handhelds to structure a forum in which student-student-teacher interaction 
played an important role in resolving the issue of concern. Despite the value 
teachers placed on this process, neither teacher believed that this could be 
implemented in a contrived way – rather they indicated that such 
opportunities are by nature serendipitous and that it was part of a teacher’s 
repertoire to accommodate and take advantage of such events as they 
occurred. 
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The role of CAS based technologies as a provocateur of productive 
student-student-teacher interaction, in both small group and whole class 
settings, appears to have potential to mediate collaborative discussion, and 
within the particular context of this article, provides possibilities for 
enhancing the teaching and learning of mathematical modelling, and is 
therefore an area worthy of further research.  
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