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Grace and McLean (2006) proposed a decision model for acquisition of choice in concurrent chains
which assumes that after reinforcement in a terminal link, subjects make a discrimination whether the
preceding reinforcer delay was short or long relative to a criterion. Their model was subsequently
extended by Christensen and Grace (2008, 2009a, 2009b) to include effects of initial- and terminal-link
duration on choice. We show that an expression for steady-state responding can be derived from the
decision model, which enables a model for choice that provides an account of archival data that is equal
or superior to the contextual choice model (Grace, 1994) and hyperbolic value-added model (Mazur,
2001) in terms of goodness of fit, parsimony, and parameter invariance. The success of the steady-state
decision model validates the strategy of understanding acquisition phenomena as a bridge toward

explaining choice at the molar level.
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The concurrent-chains procedure is com-
monly used to study choice between reinforce-
ment outcomes signaled by distinctive stimuli.
In a typical version of this procedure, pigeons
peck at two lighted response keys during the
choice phase or initial links. Concurrent
variable-interval (VI) schedules operate during
the initial links, and provide access to one of
two mutually exclusive terminal-link schedules,
which are wusually signaled by distinctive
stimuli. Responding during the terminal links
produces access to food, after which the initial
links are reinstated.

Most prior research has used steady-state
designs in which the same pair of terminal-link
schedules is maintained until responding has
stabilized. The terminallink schedules are
varied across conditions. Response allocation
during the initial links is interpreted as a
measure of the relative value of the terminal-
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link stimuli as conditioned reinforcers, and
the primary challenge has been to describe
how response allocation depends on the initial
and terminallink schedules. Various models
for concurrent chains have been proposed,
including delay reduction theory (DRT; Fan-
tino, 1969), the contextual choice model
(CCM; Grace, 1994) and the hyperbolic
value-added model (Mazur, 2001), and have
been shown to account for a substantial
percentage of variance in response allocation.

Although differing in specific details, these
models are related to the matching law and
share the assumption that choice in the initial
links depends on the relative value of the
terminal-link stimuli. However, there are rea-
sons to question whether this assumption—
which Grace (2002) termed the value hypothe-
sis— can be sustained. For example, Grace and
Nevin (1999) used a procedure in which the
terminal links included no-food trials similar
to the peak procedure (Roberts, 1981) so that
temporal control of responding in the termi-
nal links could be studied. In their study,
pigeons were trained with fixed-interval (FI)
40-s and 20-s terminal links. After 25 sessions,
initial-link response allocation strongly favored
the alternative leading to the FI 20 s, and the
location of peak responding on no-food trials
was approximately equal to the schedule
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duration. Next, the pigeons received 25
sessions of training in which only the termi-
nal-link stimuli were presented and the FI 40 s
was changed to FI 10 s. The initial links were
replaced by an intertrial interval during which
the keys were dark, so that technically the
procedure was a multiple peak procedure. The
location of peak responding adapted rapidly to
the new schedule values, and was maintained
over the course of the 25 sessions. The pigeons
were then returned to concurrent chains. The
key result was that although responding on no-
food trials showed that pigeons continued to
time the 20-s and 10-s delays accurately, initial-
link choice favored the alternative that led to
the FI 20-s schedule and required many
sessions to switch preference. Thus, there was
a dissociation between choice and timing such
that pigeons responded more in the initial
links for the alternative that they ‘‘knew’,
based on their terminal-link responding, was
associated with the longer delay. These data
are difficult to reconcile with the view that
initial-link responding reflects the relative
value of the terminal-link stimuli, or results
from sampling of memory distributions asso-
ciated with each alternative (Gibbon, Church,
Fairhurst & Kacelnik, 1988; Gallistel & Gibbon,
2000).

The challenge that results like Grace and
Nevin’s (1999) pose for traditional models for
choice based on matching and conditioned
reinforcement suggests that rather than at-
tempting to understand choice from a ‘“‘top
down” perspective, that is, by developing a
quantitative model that can describe steady-
state allocation at the molar level, it might be
worthwhile to try a “bottom up” approach.
Specifically, studying how response allocation
changes when the terminal-link schedules are
altered—that is, the dynamics of choice—may
lead to a model that not only accounts for
changes in response allocation, but makes
accurate steady-state predictions as well. In the
present article, we show that the decision
model proposed by Grace and McLean
(2006) and Christensen and Grace (2008) to
account for acquisition phenomena leads to
an expression for the effects of terminallink
schedules on steady-state choice. In brief, the
model assumes that when food is obtained in a
terminal link, subjects make a discrimina-
tion—a decision—about whether the delay
from terminal-link onset to food was relatively
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short or long. The tendency to respond to the
corresponding initial link increases or decreas-
es if the delay is judged short or long,
respectively. Response allocation at steady state
reflects the cumulative effect of these discrim-
inations. The expression for the effects of
terminal-link schedules plays the same role as
conditioned reinforcement in the models of
Grace (1994) and Mazur (2001), leading to a
model that can describe the archival data with
a comparable degree of accuracy. We first
review the background studies for the decision
model proposed by Grace and McLean and
extended by Christensen and Grace (2008,
2009a, 2009b). We then note an additional
assumption for the model to provide a realistic
account of choice, and derive an expression
for the effects of terminal-link schedules on
steady-state responding. Finally, we apply the
resulting model to the same archival data sets
used by Grace and Mazur, and compare
performance of the various models.

Acquisition of Choice in Concurrent Chains

Hunter and Davison (1985) pioneered the
use of a pseudorandom binary series (PRBS)
to study the acquisition of choice behavior. In
their experiment, the alternative associated
with the richer reinforcement rate in concur-
rent VI VI schedules changed unpredictably
across sessions according to a PRBS. The PRBS
ensured that whichever alternative was richer
for a given session was random, and could not
be predicted on the basis of prior sessions.
Hunter and Davison showed that pigeons’
response allocation adjusted rapidly to chang-
es in the reinforcer ratio. Subsequently Scho-
field and Davison (1997) used a lagged
multiple regression analysis to show after
sufficient training with the PRBS procedure,
response allocation in a given session depend-
ed on the relative reinforcement rate in that
session and with little evidence of control from
prior sessions (see also Davison & McCarthy,
1988).

Grace, Bragason and McLean (2003) inves-
tigated whether pigeons’ response allocation
in concurrent chains could track unpredict-
able changes in terminal-link reinforcement
delays across sessions using a similar PRBS
design. In their Experiment 1, the left termi-
nal link was always FI 8 s and the right terminal
link was either FI 4 s or FI 16 s, as determined
by a 3l-step PRBS across sessions. Multiple
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regression analyses confirmed that after two
exposures to the series (62 sessions), initial-
link response allocation depended on the
terminal-link delays arranged in the current
session and with negligible influence from
previous sessions. Results showed that sensitiv-
ity to reinforcer immediacy increased through
the first half of the session, and remained
approximately constant thereafter.

In Experiment 2, Grace et al. (2003) tested
whether arranging a unique FI schedule value
for the right alternative in each session,
rather than selecting either FI 4 s or FI 16 s,
would disrupt the acquisition of choice. The
pigeons were the same as those from Exper-
iment 1, and training began immediately
after that experiment was completed. Sur-
prisingly, Grace et al. found that sensitivity to
reinforcer immediacy was approximately the
same as the level reached in Experiment 1
and did not change systematically over the
course of training (60 sessions). They con-
cluded that whatever response strategy the
pigeons had learned in Experiment 1 was not
disrupted by the use of different delays for
the right terminal link in each session in
Experiment 2.

Grace and McLean (2006) noted that these
results—particularly the lack of disruption in
Experiment 2—were potentially problematic
for models of choice based on conditioned
reinforcement. If response allocation depend-
ed on the learned value of the terminallink
stimuli, then it should have been easier for
choice to adjust in Experiment 1, where the
right terminal link changed between two
values, than in Experiment 2, where the right
terminal link was sampled from a potentially
infinite population of values. Thus, Grace and
McLean conducted an experiment to compare
response allocation in two conditions: A
minimum-variation condition which was identi-
cal to that used by Grace et al. (2003) in
Experiment 1; and a maximum-variation condi-
tion in which a different terminal-link FI value
was arranged for both alternatives in every
session, with the location of the shorter FI
determined by a 31-step PRBS. They reasoned
that if choice depended on the learned value
of the terminallink stimuli, then pigeons
should show greater sensitivity to immediacy
in the minimum-variation condition. However,
Grace and McLean found that there was no
systematic difference in sensitivity between
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the minimum- and maximum-variation condi-
tions.

Analysis of data from the maximum-varia-
tion condition showed two distinct patterns of
results: In some cases, scatterplots of log
initial-link response allocation as a function
of the terminallink log immediacy ratio were
approximately linear, consistent with general-
ized matching. However, in other cases the
scatterplots showed a nonlinear pattern, in
which response allocation fell into one of two
clusters depending on whether the left or right
alternative was favored. Overall, the relation-
ship appeared to be sigmoidal, with a greater
difference between the clusters than within
them (see their Figure 4). Grace and McLean
(2006) suggested that a process akin to
categorical discrimination may have influ-
enced responding—that is, the pigeons
learned to respond more in each session to
whichever alternative led to the shorter termi-
nal link delay, but how much that delay was
shorter than the alternative had little influence
over choice.

Grace and McLean (2006) proposed a
model which could account for the different
patterns of results in the maximum-variation
condition. They assumed that after reinforce-
ment in a terminal link, pigeons made a
decision about whether the preceding rein-
forcement delay was short or long relative to a
criterion. If the delay is judged short, response
strength for the associated initial link increas-
es, whereas if the delay is judged long, then
response strength decreases. Response alloca-
tion is then predicted by the ratio of the
response strengths. Changes in response
strength are made according to a linear-
operator rule (with parallel equations for left
and right alternatives):

Ary 1 =0(1max — 1a) With probability p and
— (7, — Tmin) With probability 1 —p, so that (1)
AVn—&-l =p O((7'max - Tn) + (1 —ﬁ)(—a)(Tn - 7min)-

According to Equation 1, Ar, (change in
expected response strength for cycle n+l) is
a function of response strength on the
previous cycle (1,), and an additive or subtrac-
tive term, depending on whether the delay on
cycle n was judged as short or long, respec-
tively. If the previous delay was judged as short
(with probability p), the response strength
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increases by a proportion (o) of the difference
between the maximum response strength
(rmax) and current response strength, whereas
if the delay was judged as long (with probabil-
ity 1 — p), response strength decreases by a
proportion of the difference between the
current and minimum response strength
(Tmin)-

The model assumes that all delays are scaled
logarithmically, and computes the probability
of a ‘“‘short” decision as the area under a
normal distribution to the right of the previous
delay, log D. The mean of the distribution is the
average of the log delays across both alterna-
tives, and is referred to as the criterion (log C).
The standard deviation (o) is a parameter in
the model, which determines the accuracy with
which delays are judged as short or long.
Specifically, the probability, p, that a delay, log
D, is judged short is 1 — ®(log D, log C, o),
where @ is the cumulative normal distribution
with mean = log Cand standard deviation = ©
evaluated at log D. Grace and McLean (2006)
showed that when o was relatively high,
classification decisions were less accurate and
response allocation was approximately a linear
function of the log immediacy ratio (i.e.,
generalized matching). However, when ¢ was
relatively small, decisions were more accurate
and response allocation was a nonlinear (sig-
moidal) function of the log immediacy ratio.
Grace and McLean fitted the model to the
results from individual subjects and showed
that it accounted for the major features of the
data.

Christensen and Grace (2008) noted that a
major limitation of the decision model was
that it was unable to account for effects of
overall initial- and terminallink duration,
which are well established in the literature
(Berg & Grace, 2006; Grace & Bragason,
2004). For example, Fantino (1969) showed
that preference between a constant pair of
terminal links became less extreme when the
initial-link schedules increased. An effect of
overall terminal-link duration on preference
was first reported by MacEwen (1972), who
found that preference for the shorter of two
terminal-link schedules in a constant ratio
increased as their overall duration increased.
The initial- and terminal-link effects were
influential in the development of delay-reduc-
tion theory (see Fantino, Preston & Dunn,
1993; Fantino & Romanowich, 2007, for
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reviews) and are predicted by other steady-
state models for choice (Grace, 1994, 2004;
Mazur, 2001).

Christensen and Grace (2008) proposed
that the criterion in the decision model could
be calculated as the average of all interstimulus
intervals correlated with reinforcement. Thus
both intervals between initial-link onset and
terminal-link entry, as well as between termi-
nal-link onset and reinforcement, were includ-
ed. The rationale was that when making
decisions about whether delays were short or
long, pigeons did not clearly discriminate
between initial- and terminal-link intervals.
They showed that when the criterion was
computed in this way, the decision model
predicted the initial-link effect. As initial-link
duration increased, the criterion increased
and thus p increased for both terminal links.
However, they showed that p increased more
slowly for the shorter schedule, producing an
attenuated preference. Moreover, the model
also predicted that preference would decrease
for very short initial-link durations, which was
confirmed in an experiment.

Christensen and Grace (2009a) showed that
the decision model also predicted the termi-
nal-link effect when both initial- and terminal-
link delays contributed to the criterion. They
showed that when terminal-link duration was
increased, the criterion also increased but less
than proportionally. Consequently the predict-
ed preference (which is determined by the
ratio of p for the left and right terminal links)
increased. They reported an experiment using
a rapid-acquisition design that confirmed both
the increased sensitivity to reinforcer immedi-
acy predicted by the terminallink effect, but
also the less-than-proportional increase in the
criterion.

Christensen and Grace (2009b) made two
further additions to the decision model. They
included a linear-operator term to account for
changes in response strength across sessions,
and proposed an exponentially weighted
moving average (EWMA; Killeen, 1981) for
updating the criterion:

log Cy+1=PB(log Dy)+(1—P)log Cy. (2)

The criterion is assumed to be updated after
every transition between stimuli (i.e., initial link
to terminal link, and terminal-link to reinforce-
ment or at terminallink entry and after
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reinforcement might be better). In Equation 2,
log Cyand log Cy.; are the criterion values after
stimulus transitions N and N-1, respectively, log
Dy is the Nth stimulus—transition interval, and 3
indicates how much weight is given to the most
recent interval.

Here we propose one further change in the
decision model. Because all of the previous
studies which have tested the decision model
have used FI terminal links, there was no
variability in the delay to reinforcement associ-
ated with a given terminal link in each session.
However, when VI schedules are used, it may be
more difficult for subjects to discriminate
whether the delay just experienced was short
or long. As response strength is updated after
reinforcement delivery (according to Equation
1), the decision must be made retrospectively,
and when delays for a particular alternative are
variable within session, subjects’” memory for
the just-experienced delay may be influenced to
some extent by previous delays in the session.
Thus we will assume that the subjects’ memory
for just-experienced delay can be calculated as a
EWMA of the history of delays for that
alternative. Separate EWMAs are calculated
for each of the terminal links. For simplicity,
we will also assume that all VI schedules use
exponentially distributed intervals (Fleshler &
Hoffman, 1962).

This addition to the model has two major
consequences. First, it allows the model to
predict preference for variability, that is for VI
xs over FI xs. The reason is that although the
arithmetic mean delay may be equal for VI x
and FI x, the average of the log delays (i.e., the
geometric mean) will be lower for VI «x.
Second, because the geometric mean of a VI
distribution is less that of an FI distribution
(which equals the arithmetic mean), the
model will predict less extreme preference
when the terminal links are both VI sched-
ules (e.g., VI x VI y) compared to correspond-
ing FI schedules (FI x FI y). Thus the model
predicts more extreme preference with FI FI
terminal links for the same reason that it
predicts the terminal-link effect: When the
overall duration of the terminal links increas-
es, the criterion increases but less than
proportionally.

Steady-State Decision Model

We can now derive the steady-state predic-
tions for the decision model. Given sustained
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exposure to the same terminal links, Equation
1 predicts that response strength for each
initial link will reach an asymptotic value. The
asymptote may be obtained by setting o = 1 in
Equation 1 and simplifying the resulting
expression to yield:

72 = P(max) + (1= ) (7min)- (3)

Equation 3 states that the asymptotic response
strength is a weighted average of the maxi-
mum and minimum response strengths (%yax
and 7y,;,) depending on the probability that a
delay associated with the corresponding ter-
minal link is judged short (p). In all subse-
quent analyses, 7,,x and 7, were set equal to
1 and .01, respectively, similar to our previous
applications of the decision model (Christen-
sen & Grace, 2008, 2009a, 2009b). Predicted
response allocation is then given by the ratio
of the asymptotic response strengths:

& _ Yo _ PrLTmax +(1 —PL)me
Br YoR  PRTmax + (1 _pR)ymin ’

where L and R represent calculations for the
left and right alternatives, respectively. Equa-
tion 4 is an expression for the effects of
sustained training with a given pair of termi-
nal-link schedules on initial link choice. The
probability that a delay (log D) is judged short
relative to the criterion (log C) is computed as
the probability that a random sample from a
normal distribution with mean equal to log C
and standard deviation ¢ is more than log D:

(5)

where @ is the cumulative normal distribution
evaluated at log D.

For each terminal link, log D is calculated as
the log of the geometric mean reinforcement
delay. For FI schedules, log D = the log of the
schedule value. For VI schedules, the intervals
were randomized from a set of 12 intervals
based on an exponential progression (Fleshler
& Hoffman, 1962); log D was the log geometric
mean of this distribution. For log C, we assumed
that the distribution of times spent in the initial
link could be approximated by a 12-interval
exponential progression with a mean equal to
the average time spent in the initial link. Log C
was then calculated as (log D;+log D;+log Dy +
log Dg) / 4, where log Dy is the log geometric
mean of the initial-link intervals.

(4)

p=1—(logD,log C,c),
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Archival Data Analyses

Next we compare the ability of the decision
model to account for results from steady-state
concurrent-chains experiments with that of
two previous models: the contextual choice
model (CCM; Grace, 1994), and the hyperbol-
ic value-added model (HVA; Mazur, 2001).
Specific details of CCM and HVA are present-
ed in the articles cited and we will not repeat
them here. However, we note that both models
are based on the generalized matching law
(Baum, 1974) and take the following form:

B R\“(V, . o
B_;: b(R_;) <7;)’ or in logarithmic terms,

By Ry,

log B log b+ alog (RR> +log
where B;, Bg are initial-link responses, R;, and
Ry are the rates of entering the terminal links,
and V;, Vi are the values of the terminal links,
a is a sensitivity parameter and b is bias.
According to Equation 6, initial-link response
allocation matches the relative frequency of
conditioned reinforcement (i.e., terminal-link
entry) provided by the choice alternatives with
sensitivity ¢ and bias 5, and with a concatenat-
ed term (additive in the logarithmic version)
that represents the effects of relative terminal-
link value. For the decision model, the value
ratio in Equation 6 is replaced with Equation 4
(response strength ratio). Thus, like CCM and
HVA, the decision model assumes that effects
of terminal-link schedules on choice are
additive with the effects of the relative fre-
quency of entering the terminal links (cf.
Fantino & Romanowich, 2007).

The decision model was fitted to the same
archival data sets analyzed by Grace (1994)
and Mazur (2001). In addition, CCM and HVA
were fitted. The archival data were composed
of 19 concurrentchains studies published
before 1994 and based on the following
criteria: (a) minimum of four data points for
each subject, (b) time-based terminallink
schedules, either FI or VI; and (c) equal
terminal-link reinforcer magnitudes. In addi-
tion to these criteria, we also omitted several
conditions with unequal initial-link schedules
in which one of the initial links was VI O s,
from Fantino and Davison (1983; 1 of 56
conditions) and Davison (1983; 5 of 61
conditions). Because all models made identi-
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cal predictions for Squires and Fantino (1971;
unequal initial links; equal terminal links), this
data set was omitted from the analyses. Overall,
a total of 1463 individual-subject data points
from 18 studies were analyzed . For all studies,
response allocation was scaled as the log
initial-link response ratio. Thus, a logarithmic
version of each model was fitted to the data.

For all models, parameters were estimated
that maximized the variance accounted for
using Microsoft Excel Solver. For the decision
model, there were two parameters fitted to all
data sets in which terminallink entry rates
were equal (log b and o), and three for data
sets in which rates were unequal (log b, 6, and
a). For CCM and HVA, we first used the same
number of parameters as the decision model,
that is, either two or three depending on
whether terminal-link entry rates were equal
(CCM: log b, a;, and ae; HVA: log b, a, a).
However, both models contain an additional
parameter (k) which was used by both Grace
(1994) and Mazur (2001) to provide an
adequate fit to studies with uncued terminal
links. Here we used the following rule: Both
HVA and CCM were initially fitted to the data
without letting the k parameter vary. If the
variance accounted for was less than 80%, then
the model was refitted while allowing £ to vary.
If the variance accounted for improved by
more than 5%, then the fit with the %
parameter was used, otherwise the original fit
was retained. Thus in all cases, the decision
model had the same number or fewer param-
eters as CCM and HVA.

HVA predicts exclusive preference when
one terminal link or the other does not signal
an increase in reinforcement value. In this
case, because exclusive preference is not
possible to achieve on a logarithmic scale, we
used a maximum predicted response ratio of
100:1 (or 1:100). This ensured that HVA would
have the same maximum predicted preference
as the decision model given our choice for #,,,«
and 7.

'The 18 studies included in the archival analysis were:
Alsop & Davison, 1988; Chung & Herrnstein 1967; Davison
1976, 1983, 1988; Davison & Temple 1973; Duncan &
Fantino, 1970; Dunn & Fantino, 1982; Fantino, 1969;
Fantino & Davison, 1983; Fantino & Royalty, 1987; Gentry
& Marr, 1980; Killeen, 1970; MacEwen, 1972; Omino & Ito,
1993; Preston & Fantino, 1991; Wardlaw & Davison, 1974;
Williams & Fantino, 1978.
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Table 1 shows details of the model fits.
Averaged across 18 studies (which included
87 data sets and 1463 data points), the
variance accounted for (VAC) by the decision
model (DM), HVA and CCM was 88.3%,
84.5%, and 87.6%, respectively. The corre-
sponding medians were 90.4%, 85.5%, and
88.1%. Across the studies, the minimum and
maximum VAC were: DM, 73% (Genuy &
Marr) and 99% (Duncan & Fantino, 1970);
HVA, 63% (Gentry & Marr, 1980) and 94%
(Davison, 1976); and CCM, 76% (Fantino &
Royalty, 1987) and 97% (Davison, 1976). This
shows that all three models provided a
reasonably accurate description of the data.
Notably, the DM required fewer fitted param-
eters (n = 202) compared to HVA (n = 223)
and CCM (n = 228), even while it accounted
for slightly more variance.

We conducted a residual analysis to deter-
mine whether there were systematic deviations
of the data from predictions of each model
(Sutton, Grace, MclLean & Baum, 2008).
Figure 1 plots residual scores (obtained—pre-
dicted) pooled across data sets as a function of
the predicted values for each model. Because
the models incorporate bias in structurally the
same way (i.e., as an additive term), estimates
of log b were subtracted from the predicted
values prior to the residual analysis. As Sutton
et al. noted, removing variance in bias across
studies should result in a more sensitive test of
systematic trends in the residuals.

Figure 1 shows that there appears to be a
similar systematic trend in the residuals of
each model: For strongly negative predicted
values, the residuals tend to be greater than
zero, then decrease below zero as the predict-
ed value increases, then increase as the
predicted values become positive, and then
finally decrease and become less than zero for
strongly positive predicted values. This trend
was confirmed by results of polynomial regres-
sions. In these analyses, we regressed the
residuals against the predicted values (bias
free) and their cube, and tested the signifi-
cance of the linear and cubic components.
Note that quadratic components (i.e., the
square of the bias-free predicted values) were
excluded because this function (U shape or
inverted U shape) is not invariant under
admissible transformations of the response
ratio, in which left/right or right/left is
arbitrary (see Sutton et al., 2008).
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Table 2 shows the beta coefficients for the
linear and cubic components, and the R
value, for the polynomial regressions. Results
showed that, for each model, the cubic
component was significantly negative, and
the linear component was significantly posi-
tive. These coefficients confirm that the
pattern described above was statistically signif-
icant for each model. The R® value was lowest
for the DM and highest for CCM, with HVA in
the middle. However, it is notable that the
pattern was identical in all cases, indicating
that each model failed to account fully for the
data in a similar way.

Some insight about how the data deviated
from the models’ predictions is provided by
Figure 2, which shows the results of the
polynomial regressions in terms of an ob-
tained versus predicted scatterplot. If the
residuals showed no systematic pattern, the
obtained data would fall exactly on the solid
major diagonal (i.e., obtained = predicted).
However, the curved functions are based on
the polynomial regressions, and show that the
obtained data deviated from the models’
predictions in a similar way. As expected from
the regression coefficients in Table 2, the
strength of the pattern was strongest for HVA
and weakest for the DM, with CCM in the
middle.

Finally, we conducted an analysis to deter-
mine whether the models’ sensitivity parame-
ters were invariant with respect to whether VI
or FI terminal links were used. Grace (1994)
reported that for CCM, sensitivity to relative
terminal-link immediacy was greater for FI
than VI terminal links. Thus the studies were
separated into two groups depending on
whether terminal links were both FI (n = 12)
or both VI (n = 6)% For CCM, sensitivity values
(a2) were significantly greater for FI terminal
links (M = 1.79) than VI terminal links (M =
0.81), ¢«(85) = 3.60, p < .001. There was an
opposite trend for HVA: a, was greater for VI
terminal links (M = 0.86) than FI terminal

?The studies with FI terminal links were: Chung &
Herrnstein, 1967; Davison 1976, 1983, 1988; Davison &
Temple 1973; Duncan & Fantino, 1970; Gentry & Maur,
1980; Killeen, 1970; MacEwen, 1972; Omino & Ito, 1993;
Wardlaw & Davison, 1974; and Williams & Fantino, 1978.
The studies with VI terminal links were: Alsop & Davison,
1988; Dunn & Fantino, 1982; Fantino, 1969; Fantino &
Davison, 1983; Fantino & Royalty, 1987; and Preston &
Fantino, 1991.
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For the archival studies listed, average estimated parameter values, variance accounted for
(VAC), number of data sets per study, number of data points per study, and number of
parameters fitted per study for the decision model (DM), hyperbolic value-added model (HVA;

Table 1
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Mazur, 2001), and contextual choice model (CCM; Grace, 1994).

Decision Model (DM)

Parameters
Archival Study log b a o VAC #Data Sets n #Params
Alsop & Davison 1988 0.11 0.79 0.52 0.88 6 156 18
Chung & Herrnstein 1967 0.18 1.00 0.22 0.88 6 54 12
Davison 1976 0.24 0.43 0.17 0.97 1 20 3
Davison 1983 0.02 0.76 0.38 0.82 6 314 18
Davison 1988 0.04 1.00 0.46 0.92 6 135 12
Davison & Temple 1973 0.00 1.00 0.32 0.90 8 156 16
Duncan & Fantino 1970 0.08 1.00 0.10 0.99 2 12 4
Dunn & Fantino 1982 0.17 1.00 0.17 0.77 4 24 8
Fantino 1969 —0.40 1.00 0.15 0.91 4 16 8
Fantino & Davison 1983 —0.05 0.16 0.24 0.90 6 330 18
Fantino & Royalty 1987 0.14 1.00 0.28 0.77 6 42 12
Gentry & Marr 1980 0.03 1.00 0.56 0.73 4 36 8
Killeen 1970 —0.13 1.00 0.20 0.96 4 16 8
MacEwen 1972 0.17 1.00 0.19 0.97 4 16 8
Omino & Ito 1993 0.09 1.00 0.31 0.91 6 27 12
Preston & Fantino 1991 0.06 0.62 0.29 0.79 9 65 27
Wardlaw & Davison 1974 0.11 1.00 0.24 0.92 1 20 2
Williams & Fantino 1978 0.27 1.00 0.12 0.91 4 24 8
Average 0.883 Total 87 1463 202
Hyperbolic Value-Added Model (HVA)
Parameters
log b a a; k VAC #Data Sets n #Params
Alsop & Davison 1988 0.04 0.79 0.62 0.20 0.88 6 156 18
Chung & Herrnstein 1967 0.11 1.00 0.76 0.21 0.89 6 54 13
Davison 1976 0.26 0.35 1.14 0.20 0.94 1 20 3
Davison 1983 0.05 0.78 0.66 1.83 0.84 6 314 24
Davison 1988 0.04 1.00 0.86 0.20 0.87 6 135 12
Davison & Temple 1973 —0.06 1.00 0.33 0.99 0.81 8 156 20
Duncan & Fantino 1970 0.07 1.00 1.09 0.20 0.83 2 12 4
Dunn & Fantino 1982 0.16 1.00 1.00 0.00 0.93 4 24 12
Fantino 1969 —0.47 1.00 1.07 0.20 0.78 4 16 8
Fantino & Davison 1983 —0.11 0.15 0.73 1.83 0.76 6 330 19
Fantino & Royalty 1987 0.13 1.00 1.14 0.17 0.78 6 42 13
Gentry & Marr 1980 0.02 1.00 0.45 0.07 0.63 4 36 12
Killeen 1970 —0.11 1.00 0.79 0.20 0.93 4 16 8
MacEwen 1972 0.30 1.00 0.88 0.20 0.79 4 16 8
Omino & Ito 1993 0.05 1.00 0.53 0.20 0.91 6 27 12
Preston & Fantino 1991 0.01 0.54 0.75 0.20 0.81 9 65 27
Wardlaw & Davison 1974 0.11 1.00 0.69 0.20 0.91 1 20 2
Williams & Fantino 1978 0.26 1.00 1.33 0.20 0.91 4 24 8
Average 0.845 Total 87 1463 223
Contextual Choice Model (CCM)
Parameters
log b a; as k VAC #Data Sets n #Params
Alsop & Davison 1988 0.19 0.81 0.39 1.00 0.88 6 156 18
Chung & Herrnstein 1967 0.17 1.00 2.77 1.24 0.87 6 54 13
Davison 1976 0.27 0.67 3.26 1.00 0.97 1 20 3
Davison 1983 —0.02 0.81 0.97 0.47 0.81 6 314 24
Davison 1988 0.04 1.00 0.42 0.33 0.92 6 135 18
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Table 1
(Continued)
Contextual Choice Model (CCM)
Parameters
Archival Study log b a; as k VAC #Data Sets n #Params
Davison & Temple 1973 —0.05 1.00 1.18 0.62 0.86 8 156 20
Duncan & Fantino 1970 0.07 1.00 4.67 1.00 0.95 2 12 4
Dunn & Fantino 1982 0.16 1.00 1.87 1.00 0.96 4 24 8
Fantino 1969 —0.24 1.00 1.47 1.00 0.92 4 16 8
Fantino & Davison 1983 —0.09 0.16 0.83 0.74 0.84 6 330 21
Fantino & Royalty 1987 0.25 1.00 1.00 0.93 0.76 6 42 13
Gentry & Marr 1980 0.02 1.00 0.90 0.47  0.76 4 36 12
Killeen 1970 —0.15 1.00 2.18 0.75 0.94 4 16 9
MacEwen 1972 0.45 1.00 1.31 1.00 0.77 4 16 8
Omino & Ito 1993 0.00 1.00 0.93 1.00 0.95 6 27 12
Preston & Fantino 1991 0.35 0.75 0.18 1.00 0.77 9 65 27
Wardlaw & Davison 1974 0.10 1.00 2.00 1.00 0.88 1 20 2
Williams & Fantino 1978 0.26 1.00 5.18 1.00 0.94 4 24 8
Average 0.876 Total 87 1463 228

links (M = 0.72), but the difference failed to
reach significance, ¢(85) = 1.80, p = .07. For
the decision model, the average sensitivity (o)
was nearly equal for FI (M = 0.30) and VI
terminal links (M = 0.29), #(85) = 0.30, ns.

This analysis shows that parameter estimates
which measure sensitivity to terminal-link
schedules were overall more consistent for
the decision model than for CCM and HVA.
For CCM and HVA, sensitivity parameters
tended to vary depending on the type of
terminal-link schedule, whereas for the deci-
sion model they did not. This suggests that the
decision model performs better than CCM and
HVA on the criterion of parameter invariance
(Nevin, 1984).

DISCUSSION

The goal of the present study was to
determine if the decision model proposed
for acquisition of choice in concurrent chains
by Grace and McLean (2006) and Christensen
and Grace (2008, 2009a) could produce a
viable model for steady-state responding, and
to compare its accuracy with that of previous
models (CCM; Grace, 1994; HVA; Mazur,
2001). To accomplish this, we derived an
expression for asymptotic relative response
strength (Equation 4), representing the effects
of terminal-link schedules on initial-link re-
sponding, and used it in the generalized-
matching law framework adopted by previous
models (Equation 6) as a replacement for

relative terminallink value. The resulting
model accounted for slightly more variance
in log initallink responding (88.3%) than
CCM and HVA (87.6% and 84.5%, respective-
ly) across a range of archival studies while
requiring about 10% fewer free parameters in
total. Moreover, the decision model showed
no evidence of systematic differences in
parameter estimates for studies with VI and
FI terminal links, unlike CCM and, to a lesser
extent, HVA. We therefore conclude that the
decision model, originally developed to ex-
plain individual differences in pigeons’ re-
sponding under dynamic conditions in which
terminal links changed unpredictably across
sessions (Grace & McLean, 2006) provides an
account of molar, steady-state choice that is at
least as good as, and arguably perhaps better
than, existing models.

However, the decision model, like CCM and
HVA, does not provide a complete account of
choice. Analysis of residuals found that a
similar pattern of systematic deviations was
present in the predictions of all three models,
which could be characterized as a third-order
polynomial with positive linear and negative
cubic components. The simplest interpreta-
tion of this pattern is that over an approxi-
mately 4-log; unit range, log response alloca-
tion is a nonlinear (sigmoidal) function,
increasing more rapidly and then less rapidly
as preference moves away from indifference,
whereas the decision model, HVA, and CCM
all predict that the rate of increase in log
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DM- Pooled Data
2 -

2 -

HVA - Pooled Data
2 -

Residuoals

3 o

Bias-Free Predicted Response Allocation

Fig. 1. Residual values (obtained-predicted; n =
1463) plotted as a function of biasfree predicted values
for the decision model (DM), CCM and HVA.

response allocation should show less change.
This pattern is most clearly apparent in
relation to CCM, which predicts that when
overall initial- and terminal-link durations are
constant, log response allocation is a linear
function of the log terminal-link immediacy
(i.e., reciprocal of delay) ratio. In contrast to
CCM, the decision model predicts that log
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Obtained

= Equality
——-DM

¥

redicted

Fig. 2. Obtained versus predicted log response alloca-
tion scatterplot showing fitted cubic polynomials based on
the regression analysis for each model’s residuals. If the
residuals bore no systematic relationship to predicted
values, the fitted functions would correspond to the major
diagonal (dark line), representing obtained = predicted.
The curvature in the dashed lines indicates how the
obtained data deviated systematically from the predictions
of the DM, HVA, and CCM.

response allocation should be a sigmoidal
function of the log terminal link immediacy
ratio, with the degree of nonlinearity deter-
mined by the parameter o (see Grace &
McLean, 2006, Figure 6). However, the resid-
ual analysis shows that the decision model fails
to capture the full extent of the nonlinearity in
the data.

The variance accounted for by CCM and
HVA is somewhat lower than that reported by
Grace (1994) and Mazur (2001), who found
that the models accounted for approximately
90% of the variance in response allocation.
This can be attributed to their use of choice
proportions rather than log ratios, which
impose ceiling and floor effects and thus limit
the deviations of obtained from predicted
values for relatively extreme preference condi-

Table 2

Results of polynomial-regression analysis of residual scores.
Shown are the beta coefficients for the linear and cubic
polynomial components and Rz, for the DM, CCM and
HVA models.

Model Linear Cubic R
DM 0.08%:#* —0.04%%* .042
HVA 0.19%:#* —0.06%%* .081
CCM 0,14k —0.05%:#:* 103
kg <001
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tions. It is notable that when the analyses in
the present article were carried out using
choice proportions (not reported here), no
systematic deviations were found in the resid-
uals of any model. This confirms that log ratios
provide a more sensitive assay of response
allocation, and should be used instead of
choice proportions, particularly when models
are fitted.

Unlike CCM and HVA, the decision model
was able to account for the more extreme
preference observed with FI terminal links but
with no systematic change in estimated values
of the sensitivity parameter. The reason that
the decision model is able to predict less
extreme preference with VI terminal links is
that the use of an exponentially-weighted
average of log delays to compute the criterion
yields a lower value when terminal links are VI
than FI. Thus the decision model predicts
more extreme preference with FI than VI
terminal links for the same reason that it
predicts an effect of overall terminallink
duration (Christensen & Grace, 2009a): Use
of FI terminal links results in a longer criterion
delay compared to VI terminal links with the
same average reinforcement delay.

The success of the decision model in
specifying an expression for steady-state re-
sponding validates the strategy of studying
acquisition as a means toward explaining
molar choice. The rapid acquisition design in
which terminal-link schedules change unpre-
dictably across sessions according to a PRBS
(Hunter & Davison, 1985) is ideally suited for
this purpose, because it yields learning curves
within individual sessions. Experiments based
on this design can easily generate sufficient
data points to distinguish between linear and
nonlinear response allocation (Grace &
McLean, 2006; Kyonka & Grace, 2007), which
is more difficult in steady-state designs because
many sessions are required to obtain each data
point.

It is also important to note that the
incremental modifications to the decision
model proposed by Christensen and Grace
(2008, 2009a, 2009b) and here do not funda-
mentally change the structure of the decision
model as initially specified by Grace and
McLean (2006). For example, Christensen
and Grace’s (2008) proposal—including the
initial-link intervals in the criterion—did not
change predictions for Grace and McLean
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because the prior study did not vary initial-link
duration. Similarly, calculating the delay to be
judged short or long as a EWMA of previous
delays on an alternative—which was necessary
here to account for the preference between VI
schedules—does not affect the previous appli-
cation of the decision model to FI schedules.
Our strategy has been to make the necessary
changes to the decision model in a step-by-step
fashion, thus increasing its generality and
extending it to a broader range of situations.
The alternative approach of defining a com-
plete model at the outset would not have
worked, as it would have been unnecessarily
complex for the initial applications. Further
elaboration of the model will be necessary to
extend its scope further, for example to
incorporate the effects of reinforcer magni-
tude and probability.

At a more theoretical level, the decision
model provides an alternative to conditioned
reinforcement as an explanation for initial-
link responding in concurrent chains. Accord-
ing to the traditional view shared by models
such as DRT, CCM and HVA, terminal-link
stimuli acquire the capacity to reinforce
responding through a process akin to Pavlov-
ian conditioning, and consequently response
allocation during the initial links reflects the
relative conditioned value of the terminal-link
stimuli. In contrast, the decision model as-
sumes that differential initial-link responding
results from the cumulative effect of making
discriminations about terminal-link delays.
According to the decision model, what is
learned and expressed as response allocation
in concurrent chains is the relative propensity
to respond in the presence of the initial-link
stimuli. Regarding the terminal links, the
decision model assumes that subjects learn
the reinforcer delays signalled by the stimuli
(represented by the EWMA), and so those
stimuli can provide discriminative control for
terminal-link responding. Thus, the decision
model is able to accommodate the results of
experiments which have examined temporal
control of terminallink responding (e.g.,
Grace & Nevin, 1999; Kyonka & Grace,
2007), which are problematic for accounts
based on conditioned reinforcement. The
dissociation between choice and timing re-
ported by Grace and Nevin occurs because the
determiners of responding in the initial- and
terminal links are different. Initial-link re-
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sponding is updated through a retrospective
process (i.e., decisions about recent terminal
link delays) and requires the initial-link stimuli
to be present for the effects of those decisions,
in terms of changes in response strength, to be
made.

Effects of temporal context on choice—that
is, overall initial- and terminal-link duration—
are among the most important results in
concurrent chains. Previous models have
explained these effects in terms of how
conditioned reinforcement depends on tem-
poral context (Fantino, 1969; Mazur, 2001), or
temporal context modulates the sensitivity of
choice to terminallink value (Grace, 1994).
The decision model is different from these
accounts because it assumes that temporal
context effects result essentially from a confu-
sion of initial- and terminal-link stimuli:
Whereas optimal decisions regarding which
terminal link had the shorter delay would
require comparison with a criterion that
depended solely on terminal-link delays, ac-
cording to the decision model the intervals
between initial-link onset and terminal-link
entry also contribute to the criterion, and
explain why temporal context effects occur.
This suggests a testable prediction of the
model: Assuming that making initial-link
stimuli more discriminable from terminal-link
stimuli means that they are less likely to
contribute to the criterion, attenuated effects
of temporal context should be obtained when
initial- and terminallink stimuli are more
discriminable. For example, an experiment
might compare the magnitude of the terminal-
or initiallink effect in two conditions that
differed in terms of whether the initial- and
terminal-link stimuli differed in both color
and position (e.g., white side keys for the
initial links; red or green center keys for the
terminal links) or in just whether the alterna-
tive key was illuminated (e.g., initial links
signalled by left red and right green Kkeys;
terminal links signalled by extinguishing the
alternative initial link). Stronger effects of
temporal context should be obtained in the
latter condition, where the initial- and termi-
nal-link stimuli are more similar.

Some evidence from previous studies sug-
gests this prediction may be valid. Grace (1994)
found that the parameter k, which scales the
effect of temporal context, was only necessary to
fit for studies in which the terminal links were
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uncued; otherwise kwas equal to 1. Typically in
these studies the terminal links were signalled
by blackout (e.g., Chung & Herrnstein, 1967;
Gentry & Marr, 1980), and Grace found that for
these studies, a better fit was obtained with £k <
1, indicating a weaker effect of overall terminal-
link duration. The distinctiveness of the initial-
and terminal-link situations is arguably greater
when the initial links are signalled by keylights
with a houselight providing general illumina-
tion and the terminal links are signalled by
blackout (as in the uncued studies cited above),
than when the houselight is always illuminated
and the only difference between the initial and
terminal links is which keys are lighted and
their color. The confusability of the initial- and
terminal-link situations should be less in the
former case, and if this reduces the contribu-
tion of the initial-link delays to the criterion the
effect of overall terminal-link duration would
be reduced, consistent with the data.

The decision model assumes that delays are
scaled logarithmically. The reason for this
assumption is simplicity: By using log delays,
the model is able to use a single parameter (o)
which determines the accuracy with which
delays are judged short or long relative to the
criterion. This entails that the relative discrim-
inability of a pair of terminallink delays
depends on their ratio and not their absolute
values, consistent with Weber’s Law. The
model is able to predict the well-known
deviations from Weber’s Law in concurrent
chains—the initial- and terminal-link effects—
because the initial link delays are included in
the computation of the criterion. However it
should be noted that a model which assumed a
linear scaling of delays could make equivalent
predictions, provided that the standard devia-
tion increased proportionally with the criteri-
on (C). For such a model, the coefficient of
variation (¢ / C) would be the fundamental
sensitivity parameter (as in Gibbon, 1977),
comparable to ¢ in the current model.

One of the most well known results in the
concurrent-chains literature is preference for
variability—that is, for a VI schedule over an FI
schedule that provides the same reinforce-
ment rate (Herrnstein, 1964). Although the
decision model predicts preference for VI over
FI schedules with the same arithmetic mean
delay, because of the use of log scaling and the
EWMA to update the terminallink delay it
predicts that the VI-FI equivalence value, that
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is, the FI schedule that should be equally
preferred to a VI schedule, should occur at the
geometric mean of the intervals comprising
the VI. By contrast, most research suggests that
the VI-FI equivalence value occurs at the
harmonic mean of the VI intervals (Killeen,
1968; Mazur, 1984). A task for the future is to
determine whether the decision model is able
to provide an adequate account of results of
studies on preference for variability, and
whether it is able to predict VI-FI equivalence
at the harmonic mean.

It is important to note that although the
decision model describes the average course of
acquisition for a pair of terminal-link sched-
ules, this does not necessarily correspond to
the actual change in response allocation that
might be observed in any particular session.
Like all linear-operator models, the decision
model predicts a steady approach towards
asymptote. But data from individual sessions
rarely show smooth acquisition curves. For
example, Grace and McLean (2006) examined
data at the level of session twelfths, and found
that trajectories within single sessions were
highly variable (see their Figure 10). More-
over, there is substantial evidence that abrupt
switches in response allocation (i.e., from
favoring one alternative to the other) occur
within sessions when schedules are changed
frequently (Gallistel, Mark, King, & Latham,
2001; Kyonka & Grace, 2007, 2008). Because
the decision model computes the probability
of a ““short’” decision—not the actual decision
that is made—it is limited to describing the
average course of acquisition. Whether a
modified version of the model can be applied
to single sessions (perhaps through simulating
real-time decisions) is a task for future
research.
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