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Delayed matching to sample is typically a two-alternative forced-choice procedure with two sample stimuli.
In this task the effects of varying the probability of reinforcers for correct choices and the resulting
receiver operating characteristic are symmetrical. A version of the task where a sample is present on some
trials and absent on others is analogous to a yes/no recognition task. We describe data from two
experiments where an asymmetry in performance in the yes/no task could be attributed to a change in
response bias with increasing retention-interval duration from a matching-law perspective, but not from a
signal-detection perspective. Both approaches make explicit assumptions about response bias. The
apparent inconsistency between the two approaches to the treatment of response bias is resolved in terms
of a model proposed by K. G. White and J. T. Wixted (1999) which predicts asymmetrical matching-law
functions and receiver operating characteristics without making any assumptions about response bias.
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Psychophysics began well over a century ago
in an endeavor to measure an individual’s
ability to detect near-threshold stimuli. At an
early stage, psychophysicists recognized the
influence of response bias—a tendency to say
“yes’”” unrelated to sensory factors. Early
studies included ‘‘catch trials”” where there
was no stimulus present so that false alarms
(incorrect ‘yes’ responses) could be recorded,
and a measure of accuracy could be calculated
by correcting the proportion of accurate
responses, or hit rate, by the false alarm rate
(Egan & Clark, 1966). The classic correction-
for-guessing measure, p = (hit rate)/(1- false
alarm rate), is still in use, and makes use of
responses on both trials when the stimulus was
present and on catch trials when it was absent.
Thus an important contribution of psycho-
physics over the last 100 years was the
recognition that performance is influenced
by response bias, and that accuracy measures
can be derived to take account of (and to be
independent of) bias.
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In the present article we discuss the treat-
ment of response bias in nonhuman remem-
bering, particularly delayed matching to sam-
ple. We consider analyses in terms of the
modern psychophysical approach (signal de-
tection theory), behavioral approaches based
on the matching law, and our own theory
which blends the two (White & Wixted, 1999;
Wixted & Gaitan, 2002). We do this in the
context of two methods used to measure
detection and recognition, the Yes/No proce-
dure and the Two-Alternative Forced-Choice
(2AFC) procedure (Jang, Wixted, & Huber,
2009). The signal detection and matching law
approaches differ in their assumptions about
bias, whereas our own model makes no
assumptions about bias but can predict it.

Signal-detection theory was developed to
allow the separate measurement of detectabil-
ity and response bias (Green & Swets, 1966;
Macmillan & Creelman, 2005). Figure 1 illus-
trates the two main assumptions of the theory.
First, stimuli vary in their effect from instance
to instance. The variation is described by a
Gaussian distribution along a dimension of
stimulus effect, often described as the evidence
variable. The simplest case involves two distri-
butions, one for trials with a signal (technically
signal plus noise), and the other for trials
without a signal (noise trials). These two
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Fig. 1. Probability density distributions describing the

effect of the stimulus on sample absent (noise) and sample
present (signal) trials, according to signal detection
theory. The dotted function is the sample-present distri-
bution for less discriminable samples.

distributions are shown in Figure 1 as solid
curves.

The second assumption, following decision
theory, is that the observer establishes a cutoff
point or criterion ¢ somewhere along the
stimulus effect dimension. On each trial, the
strength of a stimulus has a value x on the
stimulus effect dimension. If the value of x is
greater than ¢, the observer reports ‘‘yes, the
stimulus was present”’, otherwise the observer
reports ‘‘no, the stimulus was not present’.
Thus, the placement of ¢ on the evidence axis
defines the observer’s decision rule (i.e., report
“yes” if x > ¢, otherwise report ‘‘no”

In Figure 1, the area under the signal curve
and to the right of ¢ equals the hit rate —the
proportion of ‘yes’ responses given that the
signal was present. The area under the no-
signal curve in Figure 1 and to the right of ¢
gives the false alarm rate—the proportion of
‘ves’ responses given in the absence of the
signal. When correct ‘yes’ responses are
associated with a high payoff, it pays to move
¢ to the left in order to maximize hits. When ¢
moves to the left, both the hit rate and the
false alarm rate will increase (but discrimina-
bility will remain unchanged). By contrast,
when incorrect ‘yes’ responses are associated
with high costs, it pays to use a value of ¢ to the
right end of the stimulus effect dimension.
When ¢ moves to the right, both the hit rate
and the false alarm rate will decrease. Thus,
payoffs can be manipulated to influence the
observer’s decision rule.

The value of ¢ in Figure 1 is placed where
the noise and signal distributions intersect,

that is, where the likelihood ratio equals 1.0,
and there is an equal tendency to say ‘yes’ or
‘no’. When cis to the right of the intersection
of the distributions, the signal/noise likeli-
hood ratio is greater than 1.0, and when cis to
the left of the intersection of the distributions,
the signal/noise likelihood ratio is less than
1.0. Thus the likelihood ratio can be used as a
measure of bias, with one common measure
being log B (i.e., the log of the ratio of the
height of the signal distribution to the height
of the noise distribution at the point where cis
placed). Under some conditions, the observ-
er’s decision rule (i.e., the location of ¢) and
the observer’s measured response bias (e.g.,
log B) are directly related, but under other
conditions they are not. The decision rule and
measured response bias are directly related
when the distributions are fixed and the
location of ¢ changes. Under those conditions,
any change in the location of ¢ entails a
corresponding change in log B. Under other
conditions, however, the decision rule and log
B are not related, a point that can be most
easily illustrated in context of a memory
experiment.

Soon after its advent, signal detection theory
was applied to the study of human memory
(Murdock, 1965). The same principles were
applied as in the study of detection, but the
evidence variable was called ‘“‘memory
strength” or ‘‘familiarity”” (Mickes, Wais, &
Wixted, 2009). In recognition paradigms, the
observer is required to distinguish words
previously seen on a list (old words) from
words not previously seen on the list (new
words). The signal distribution in this case
represents the memory strengths of the old
words, and the noise distribution represents
the memory strengths of the new words. In this
yes/no procedure, a decrease in the memora-
bility of the old words might occur with a long
retention interval. This decrease moves the
signal distribution to the left (dotted-line
distribution in Figure 1), thus decreasing the
hit rate. If decreasing the mean strength of the
signal distribution is the only effect of the
memorability manipulation, the criterion ¢
does not move—that is, the observer’s decision
rule does not change—and the location of the
noise distribution does not move. As such, the
false alarm rate remains constant. Because the
signal distribution does move leftward (reflect-
ing the decreased memorability of the old



BIASED REMEMBERING 85

words), the hit rate selectively decreases. An
important point to make about this situation is
that although the location of ¢ (i.e., the
observer’s decision rule) does not change,
log B (i.e., measured bias) does. Thus, a
change in log B does not necessarily imply a
change in the observer’s decision rule (Wixted
& Stretch, 2000). Instead, log B provides a
descriptive indication of the location of the
decision criterion relative to the point where
the height of the two distributions is equal.
Log P equals 0 if it is placed at the point of
intersection, but its value will be positive or
negative if the location of the criterion is to
the right or left of that point. The key point is
that its value will change if the location of ¢
changes or, as in this example, the mean
strength of the signal distribution changes
(with the observer’s decision rule remaining
constant). This is an important consideration
because, as explained later, Log B is concep-
tually similar to log b, the widely used measure
of response bias in the behavioral detection
model (Davison & Tustin, 1978).

Wixted (1993) studied remembering in
pigeons in a delayed matching-to-sample task
analogous to the yes/no procedure. Normally,
delayed matching involves the presentation of
either of two sample stimuli, red or green, at
the beginning of the trial, and a choice
between red and green after a delay that varies
from trial to trial. Longer delays result in lower
accuracy (White, 1985, 2001; Wixted, 1989). By
omitting one of the sample stimuli (e.g., red)
on the trials when it was otherwise scheduled,
the task in Wixted’s study was rendered
analogous to the yes/no recognition task in
human memory studies. On some trials the
green sample was presented for 5 s at the
beginning of the trial, and on others, the
sample was replaced by a 5-s dark period and
the dark intertrial interval continued through
to the dark delay before the choice stimuli
were presented.

When Wixted (1993) plotted proportion of
correct choices as a function of delay (manip-
ulated within session), correct choices of green
on sample present (or signal trials) decreased
with increasing duration of the delay and
correct choices of red on sample absent (or
noise) trials remained at a high and constant
level across delay. Figure 2 shows this same
result for the 3 pigeons in the present
Experiment 1. The result has also been
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Fig. 2. Proportion correct choices of green following
presentation of the green sample (sample present) and
red following no sample (sample absent) in the present
Experiment 1.

reported by others (Dougherty & Wixted,
1996; Gaitan & Wixted, 2000; Grant, 1991;
Weaver, Dorrance, & Zentall, 1999). The
model shown in Figure 1 provides one simple
interpretation of this result. Specifically, the
pigeon’s decision rule remains constant (i.e.,
the location of ¢ does not change), but the
mean of the signal distribution decreases with
increasing retention interval (and log f
changes accordingly). The mean of the noise
distribution does not change with delay in this
interpretation because no event signals the
end of the ITI and the onset of a noise trial.
Instead, the delay is a measure of the time
since a sample would have been presented had
this been a sample trial. Unless the pigeon is
timing the ITI and taking explicit note of the
fact that the sample did not occur at the
expected moment, there is no stimulus effect
that would diminish with increasing delay.
Instead, in the simplest interpretation, no
event occurs on no-signal trials, so the noise
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distribution and the location of ¢ are indepen-
dent of delay.

A different interpretation of the result in
Figure 2 is that with increasing duration of the
retention interval, there is an increasing
response bias to report the absence of the
sample. This interpretation is based on a
matching-law approach developed by Davison
and Tustin (1978) and Nevin (1981). In this
account, response bias is measured but no
separate assumption is made concerning the
observer’s decision rule. In addition, stimulus
bias is assumed to occur on both trial types.
That is, the presentation of the green sample
on sample trials biases the bird to choose the
green choice alternative (an effect that de-
creases with increasing delay), and the absence
of a sample at the expected moment on no-
sample trials biases the bird to choose the red
alternative (an effect that also decreases with
increasing delay). But if the no-sample effect
decreases with delay, why does performance
remain constant over delay? The answer must
be that a change in response bias exactly
offsets the change in stimulus bias.

Response bias in this account is given by the
geometric mean of the ratios of choices of one
comparison stimulus versus the other follow-
ing the two sample types (sample and no-
sample), and it is similar to the log  measure
of signal-detection theory. Specifically, log b =
0.5 log ((r1a/72a) (r1p/ 72p) ) where the subscripts
denote choice responses 1 and 7 following
absence (a) and presence (p) of the samples.
Because there is an increasing tendency to
choose the comparison associated with the
absent sample with increasing delay, the ratio
of the two choices changes over delays and
accordingly the measured bias changes. For
the data in Figure 2, the mean bias log b
increases from —0.07 at 0-s retention interval
to 0.62 at the 12-s retention interval. As noted
by Davison and Tustin (1978), response bias
captures a tendency to choose one alternative
over the other due to extraneous factors (i.e.,
factors extraneous to the effect of the sample
and no-sample events). Thus, the interpreta-
tion is that an extraneous factor is changing
with delay and causing the bird to become
more inclined to choose the no-sample alter-
native as the delay increases. Moreover, this
change in bias occurs at a rate that exactly
offsets the decreasing effect of stimulus bias
that occurs as delay increases on no-sample
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Fig. 3. Probability density distributions along the
stimulus effect dimension assumed by signal detection
theory, for high (top panels) and low (bottom panels)
levels of discriminability. Distributions in the left panels
are symmetrical and have equal variance for the 2AFC
procedure. For the yes/no procedure in the right panels,
the sample-absent (noise) distribution has the same mean
for high and low discriminability levels and has greater
variance than the sample-present distribution. Locations
of the criteria, C1 and C2, are assumed to be the same for
high and low discriminability levels in each procedure.

trials (such that performance on no-sample
trials remains constant as a function of delay).

But does bias actually change across reten-
tion interval? The change in the bias measure,
log b, is consistent with the signal-detection
bias measure, log B, but is not consistent with
the simplest signal detection analysis in the
sense that the position of the criterion ¢ in
Figure 1 does not change when discriminabil-
ity is decreased (by increasing the delay). That
is, according to the account summarized in
Figure 1, the bird does not become more
inclined or less inclined to choose red over
green. Instead, the only change is that the
mean of the signal distribution (i.e., the effect
of the sample event) decreases as the retention
interval increases. Thus, in terms of signal
detection theory, the observer’s decision rule
does not change with increasing delay in the
yes/no procedure because the mean of the
noise distribution remains at zero and the
criterion ¢ is set in relation to the noise
distribution.

The log b measure suggested by matching
law detection theory is based on the assump-
tion that the two types of samples are
symmetrical in their effect. In the standard
delayed matching-to-sample procedure the
samples and choices are symmetrical in that
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it doesn’t matter whether the “‘signal’ is red
or green or vice versa. Technically, this
procedure is called the two-alternative forced
choice procedure (2AFC). The signal-detec-
tion analysis for the 2AFC task is illustrated in
the left panels of Figure 3.

The left panels in Figure 3 describe cases
where discriminability is high or low, as is the
case for short and long retention intervals. The
distributions represent the effects of the red
and green sample stimuli and are symmetri-
cally located on the stimulus effect dimension.
In the classic signal-detection view, an equal-
variance model invariably applies to the
forced-choice situation because the evidence
variable is assumed to be the difference in
strength associated with the two alternatives
(Macmillan & Creelman, 2005). That is, if, on
a given trial, memory for red is greater than
memory for green, then the red choice
alternative is selected (otherwise the green
alternative is selected). Therefore, even if
signal strength (i.e., the strength of memory
for red on red trials or the strength of memory
for green on green trials) is associated with
greater or lesser variance than noise (i.e., the
strength of memory for green on red trials or
the strength of memory for red on green
trials), the sample is red on half the trials and
green on the other half. As such, the two
distributions generated by the difference in
strength between memory for red and memory
for green on red and green trials, respectively,
will have the same variance. Owing to the
symmetry, when the retention interval is
lengthened (and discriminability decreases),
the hit rate decreases and at the same time the
false alarm rate increases. This effect is known
as the mirror effect and is typical of the 2AFC
procedure (Glanzer & Adams, 1985).

The right panels of Figure 3 illustrate the
signal detection model applied to cases where
there are high and low levels of discriminabil-
ity in the yes/no procedure. They also
illustrate the more usual finding for the yes/
no procedure—unequal variances of the signal
and noise distributions (Mickes, Wixted, &
Wais, 2007; Wixted, 2007). Indeed, in this case,
because performance is determined by abso-
lute memory strength (not by the difference in
memory strength for red and green), and
because the two trials are asymmetrical (one
involving a physical sample, the other involv-
ing no sample at all), an equalvariance

outcome would be a coincidental outcome
(not the expected outcome).

In Figure 3, the standard deviation of the
signal distribution is 0.33 times that of the
noise distribution, although the usual result in
studies with humans (estimated from the
slopes of receiver operating characteristics) is
that it is 1.25 times greater (Yonelinas & Parks,
2007; Wixted, 2007). In Figure 3 we have
assumed that the variance of the signal
distribution is smaller than that of the noise
distribution in order to reflect the result
reported by Wixted (1993) and to anticipate
the result of the present Experiment 2. The
unequal-variance signal detection model helps
to explain asymmetries in the Receiver Oper-
ating Characteristic (a traditional method of
analysis in the signal detection literature) as
well as asymmetries in the linear matching law
functions (i.e., log ratios of the choice
responses following each of the two samples
vs. log ratios of reinforcers obtained in
different reinforcement conditions) that we
report in Experiment 2. These asymmetries
have a common origin according to the signal-
detection account (namely, unequal signal-
and noise-distribution variances), but they are
much harder to explain in terms of the
matching-law analysis of signal detection of-
fered by Davison and Tustin (1978). Although
the unequal-variance model can account for
the observed asymmetries, it offers no specific
account of why variations in relative reinforcer
probabilities have the effect they do. The
White and Wixted (1999) model integrates
the matching law with the unequal-variance
signal-detection account and adds that missing
dimension to the traditional signal-detection
interpretation. In so doing, it eliminates the
traditional notion of a decision criterion,
replacing it with a learned reinforcer ratio.

EXPERIMENT 1

In Experiment 1, we compared the results
for a yes/no procedure similar to the one used
by Wixted (1993), to the results for the
corresponding 2AFC procedure. The 2AFC
procedure was the standard delayed matching-
to-sample task with red and green samples
presented on a center response key. Following
a retention interval which varied across trials
within each session, red and green choice
stimuli were presented on side keys. The yes/
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no version of the procedure simply omitted
the red sample at the beginning of the trial.
The focus of Experiment 1 was the signal
detection analysis illustrated in Figure 3,
where variation in the retention interval was
expected to yield a mirror effect in the 2AFC
task, and a constant false alarm rate in the yes/
no task.

METHOD
Subjects and Apparatus

Three adult homing pigeons with previous
training in delayed matching to sample were
maintained at between 80 and 85 percent of
their freefeeding weights. Experimental
chambers measuring 31 X 34 X 32 cm
contained a panel with a centrally mounted
food hopper and three 2-cm diameter re-
sponse keys which could be lit red or green.

Procedure

In daily experimental sessions with the 2AFC
procedure, each of 80 trials began with the
center response key lit red or green. The fifth
of five responses on the key darkened it.
Following a dark retention interval of .2, 1.5, 3,
6, or 12 s, the side keys were illuminated red
and green. The center-key sample, retention
intervals, and left-right location of side-key
colors were varied within each session accord-
ingly to balanced quasirandom orders. Correct
choice responses produced 3-s access to grain
with a probability of 0.5, followed by a dark 20-
s intertrial interval. Incorrect responses or
unreinforced responses produced a 3-s black-
out followed by the intertrial interval. The
procedure for the yes/no task was identical
except that the red sample was replaced by a 5-
s period of darkness followed by the retention
interval without a response requirement.
Sessions in the yes/no task were completed
after the four conditions of the 2AFC task in
Experiment 2. Data analysis was based on
response and reinforcer frequencies summed
over the last seven sessions of each condition.

RESULTS AND DISCUSSION

In the 2AFC task, the hit rate was calculated
by dividing total choices of green by total
choices of both red and green following the
green sample. The false alarm rate was
calculated by dividing the total choices of
green by total choices of both red and green
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Fig. 4. Proportion of hits and false alarms as a
function of retention interval duration for 3 pigeons in
the 2AFC (left panels) and yes/no (right panels)
procedures of Experiment 1.

following the red sample. In the yes/no task
the measures were the same except that the
red sample was replaced by ‘sample absent’.
Figure 4 shows hit rates and false alarm rates
for each of the 3 pigeons plotted as a function
of retention interval. For the 2AFC task, the hit
rate declined whereas the false alarm rate
increased, albeit at a minimal level for subject
L2 which showed a very high level of discrim-
ination. For the yes/no task, the hit rate
declined whereas the false alarm rate re-
mained low and relatively constant across
retention intervals. This result is consistent
with the pattern illustrated in Figure 3.
Figure 5 summarizes the same result for the
mean hit rate or false alarm rate for the 3
pigeons in the two tasks. In the 2AFC task (top
panel), there was a mirror effect with hit rate
decreasing and false alarm rate increasing as
the retention interval lengthened. In particu-
lar, the bottom panel of Figure 5 compares the
mean false alarm rates in the two procedures.
Whereas the false alarm rate in the 2AFC task
increased with increasing retention-interval
duration, consistent with the mirror effect,
the mean false alarm rate in the yes/no task
remained constant across retention intervals.
The result in Figure 5 is consistent with the
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Fig. 5. Proportions of hits and false alarms averaged

over subjects in the 2AFC and yes/no procedures (top two
panels) and false alarm rates compared between the two
procedures (bottom panel).

signal detection analysis summarized by Fig-
ure 3—hit rate in the yes/no task decreased
with lengthening retention interval whereas
the false alarm rate remained constant. In
terms of signal detection analysis, the result of
Experiment 1 shown in Figure 2 is not
associated with a change in the decision
criterion.

EXPERIMENT 2

In Experiment 1, the relative reinforcer rate
was the same for correct choices in the two
procedures. The receiver operating character-
istic (ROC) in signal detection theory, and the
linear functions predicted by the matching-law
approach to detection (Baum, 1974; Davison &

Tustin, 1978) depend, however, on variation of
the relative payoff. In Experiment 2, the ratio
of reinforcers for correct choices was varied
across four conditions, thus generating differ-
ent levels of bias owing to the reinforcer-ratio
variation. The ROC is a plot of the hit rate
versus the false alarm rate across the four
biasing conditions, and the linear matching
law functions are plots of log response ratios
versus log reinforcer ratios for the four biasing
conditions (with separate functions plotted for
sample trials and no-sample trials). For both
the 2AFC task and the yes/no procedures, the
matching-law analysis predicts parallel linear
functions for choices following the two sample
types when the log choice response ratio is
plotted against the log reinforcer ratio for
each retention interval. The reason is that this
account has no provision for anticipating (or
for dealing with) nonparallel functions. Ac-
cording to the signal detection analysis illus-
trated in Figure 3, the ROCGCs should differ
between the two procedures, with the 2AFC
procedure generating symmetrical ROCs, and
the yes/no procedure generating asymmetri-
cal ROGs. Although the signal-detection ac-
count can accommodate an asymmetrical
ROC, it lacks any provision for accommodat-
ing linear matching law functions (whether
they are parallel or nonparallel).

MEeTHOD

Two of the same pigeons (L1 and L2),
apparatus, and procedure were used as in
Experiment 1, except that four conditions were
arranged in each of the 2AFC and yes/no tasks,
each lasting for about 20 sessions. (Subject L3
was not included in Experiment 3 owing to an
apparatus problem in the differential reinforce-
ment conditions.) For each task, four different
ratios of probabilities of reinforcers for correct
choices were arranged —.8 versus .2; .2 versus
.8; .6 versus .4; .4 versus .6, in that order and for
correct red versus green choices, with the
conditions for 2AFC conducted before the
conditions for the yes/no task. Following
completion of the yes/no conditions, a further
two conditions were conducted in the 2AFC
task with .8/.2 and .2/.8 ratios of reinforcer
probabilities. (Subject L1 did not complete the
.2/ .8 replication.) As in Experiment 1, analyses
were based on correct and error responses
summed over the last seven sessions of each
condition. When logarithms (base 10) of
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Fig. 6. Receiver operating characteristics for individu-
al pigeons in the 2AFC and yes/no procedures. Smooth
curves are theoretical ROC functions with variances of 1.0
for the 2AFC task and 2.0 and 1.0 respectively for signal
absent and signal present distributions in the yes/no task.

response ratios were calculated, 0.25 was added
to the response total in each cell in order to
avoid indeterminate values, following the rec-
ommendation of Brown and White (2005).

REsuLTS AND Discussion

Signal detection analysis relied on ROC
plots of hit rates versus false alarm rates for
the different reinforcer probability ratios.
These were averaged over data for the differ-
ent retention intervals. The data points in
Figure 6 are hit and false alarm rates for the
different ratios of reinforcer probability. Hits
were correct choices of green in each proce-
dure. The ROC curves plotted in Figure 6 were
based on equal variances of Gaussian distribu-
tions in the 2AFC task, and variances of 2.0
and 1.0 respectively for the sample-absent and
sample-present distributions in the yes/no
task. (These variances were chosen for consis-
tency with the illustration in Figure 3.) Dis-
tances between the means of the distributions
(d") were chosen so that the ROC curves were
consistent with the data. Values for d' and the
ratio of variances obtained from maximum
likelihood estimations approximated the val-
ues used to plot the ROC curves in Figure 6.
The asymmetrical ROC curve in the yes/no
procedure, which assumes that the sample-

absent distribution has larger variance than
the sample-present distribution, is opposite to
the wusual result for humans (where the
variance of the signal distribution is larger)
but confirms the result reported by Wixted
(1993).

The matching law analysis involves plotting
two linear functions—log ratios of the choice
responses following each of the two samples,
both plotted against the log of the ratio of
reinforcers obtained in the different reinforce-
ment conditions. These two functions are
expected to be parallel. The vertical distance
between the functions reflects the level of
discriminability at the different retention inter-
vals. Response bias is indicated by an asymmetry
in the intercepts of the two functions.

Figure 7 shows the matching-law functions
for Experiment 2. The plots for subjects L1
and L2 are combined because they behaved
similarly. The functions of each pair have
similar slopes in the 2AFC procedure, and
apart from the functions at the 0.2-s delay,
different slopes in the yes/no procedure. In
particular, the slope for the signal-absent trials
is flatter than for signal-present trials. In the
matching-law analysis of signal detection, bias
is measured by summing the intercepts, which
in Figure 7 demonstrate a clear bias towards
choosing sample absent. The matching-law
analysis, however, assumes that the slopes of
the functions in Figure 7 are parallel for the
yes/no procedure because the derivation of
the bias assumes that the effects of the sample-
present and sample-absent trials are symmetri-
cal, just as are the effects of the two samples in
the 2AFC task (Davison & Tustin, 1978;
McCarthy & Davison, 1980). It may be possible
for a recent matching-law analysis proposed by
Nevin, Davison, Odum, and Shahan (2007) to
predict the slope difference, but such an
account may require an assumption of differ-
ential attention on sample-present and sam-
ple-absent trials.

GENERAL DISCUSSION

We began by noting that a fundamental
contribution of modern psychophysics is the
measurement of response bias. We also noted
that in the delayed matching-to-sample analog
of the yes/no recognition procedure, the false
alarm rate does not change, consistent with
the assumption of signal detection theory that
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Fig. 7. Logarithms of response ratios following the
green sample in the 2AFC and yes/no tasks (filled
symbols) for pigeons L1 (circles) and L2 (squares), and
logarithms of response ratios following red samples in the
2AFC task and sample-absent in the yes/no task (unfilled
symbols), plotted as a function of logarithms of ratios of

the criterion on the stimulus effect axis does
not change. That is, response bias, measured
by criterion location, does not change in the
yes/no procedure. This result was first report-
ed by Wixted (1993) and was confirmed by our
Experiment 1.

We noted that this conclusion, however,
seems inconsistent with a matching law ap-
proach to signal detection according to which
a response bias to choose the choice stimulus
associated with ‘‘sample-absent’ increases with
increasing retention-interval duration (cf. Fig-
ure 2). The inconsistency may be the result of
the assumption of the matching law approach
that sample-present versus sample-absent dis-
criminations (i.e., yes/no tasks) can be treated
in the same way as red—green discriminations
(i.e., 2AFC tasks). Our Experiment 2 suggests
that this is not the case. The signal-detection
analysis indicates that the theoretical distribu-
tions of stimulus effect have different varianc-
es. That is, whereas the distributions for the
2AFC task are symmetrical, consistent with the
finding of a “‘mirror effect”, the distributions
for the yes/no task are asymmetrical. Further,
in Experiment 2 the slopes of the matching-
law lines were different for the sample-present
and sample-absent trials, whereas the match-
ing-law analysis of signal detection (Davison &
Tustin, 1978) assumes that they are the same.
It seems likely that the asymmetry in the
matching law analysis of the data for the yes/
no task (Figure 7) is related to the asymmetry
in the signal detection analysis (Figure 6), yet
neither the matching law detection analysis
nor the traditional signal detection account
can simultaneously accommodate these re-
sults.

A decade ago we described a theory for
delayed matching-to-sample performance that
offers a reconciliation and clear account for
the data in the present Experiments 1 and 2
(White & Wixted, 1999). The original version
of the theory was based on a simulation in
which reinforcers obtained (by the computer
program) determined the (computer) sub-
ject’s choices. It is possible, however, to
generate predictions by using arranged rein-
forcer probabilities and equations describing

«—

obtained reinforcers. Straight lines are the least squares
fits to the data for each retention interval for both birds.



92 K. GEOFFREY WHITE and JOHN T. WIXTED

2 (A

ch StDev = 2 StDev=1.0
0O

2

E

©

o

g

o

B
Reinf Prob = .7

2 [Reinf Prob-=.3

=

o

o

o

m r

s [C

e |

0

= Reinf Prob -=.7

T | Reinf Prob = .3
o

Stimulus Effect

Fig. 8. Illustration of the model described by White

and Wixted (1999) where distributions of reinforcer
probability (Panels B and C) are determined by multiply-
ing the probability density distributions of stimulus effect
for two samples (Panel A) by arranged reinforcer
probabilities. At any value x on the stimulus effect
dimension, the choice between response alternatives is
determined by the proportion of the heights of the two
reinforcer distributions at x.

Gaussian distributions (Brown & White, 2009;
Wixted & Gaitan, 2002). (The NORMDIST
function in Excel is especially useful in this
regard.) The main assumption of the White-
Wixted model is that the individual chooses
between two alternatives according to the
proportion or ratio of reinforcers previously
obtained for prior choices given the value of
stimulus effect, x, present at the time of
remembering. The value of x varies from trial
to trial, and over trials is associated with
distributions of reinforcer probabilities. These
reinforcer probability density distributions,
illustrated in panels B and C of Figure 8 for
arranged probabilities of .3 and .7 in one
condition, and .7 and .3 in another, are
derived by multiplying distributions of stimu-
lus effect (Figure 8, Panel A) by the arranged

reinforcer probabilities. The proportion of
reinforcers that would be obtained at each
value of stimulus effect x is the proportion of
the heights of the reinforcer distributions at x.
By summing the areas under the curves in
Panels B and C of Figure 8 it is possible to
calculate the proportion of each of the choice
responses following presentation of the two
sample stimuli, as well as the proportion of
reinforcers. The main assumption is that
following the matching law, the choice pro-
portion at any value of stimulus effect x is
determined by the proportion of reinforcers at
x. Response and reinforcer proportions can
then be used to predict levels of discrimina-
bility and bias, or other measures (White &
Wixted, 1999).

Unlike signal detection theory, the model
does not assume that decisions are based on a
criterion at a fixed location on the stimulus
effect dimension. The only correspondence to
signal detection theory is the assumption that
the samples are associated with distributions of
stimulus effect, and it allows for the possibility
that these distributions will not have the same
variance. Unlike the matching law analysis of
signal detection, the model does not assume
that choice proportions following each sample
are determined by overall reinforcer propor-
tions. That is, the model is not premised on a 2
X 2 matrix of sample stimuli and choice
alternatives. Instead, the matching law is used
to predict choice on any one trial given the
past history of reinforcement associated with
the value of x that prevails on the current trial.
That history is given by the ratio of the heights
of the signal and noise distributions for each
value of x. In many ways, this account is like
the traditional likelihood ratio model of signal
detection theory. The difference is that, in our
model, the likelihood ratio is not the ratio of
the signal versus noise stimulus likelihoods
associated with x but is instead the ratio of
reinforcers previously obtained for choosing
red versus green for that value of x.

Analysis of the 2AFC procedure, where there
is symmetry between the effects of the two
sample stimuli, was explored by White and
Wixted (1999), Wixted and Gaitan (2002), and
Brown and White (2009). Analysis of the yes/
no task, where there is an asymmetry between
the effects of sample-absent and sample-
present trials, is explored below by generating
predictions from the model. For the yes/no
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Fig. 9. Data points predicted from the White and Wixted
(1999) model, based on stimulus-effect distributions with
different variances (top panel). Straight lines were fitted to
the predicted data points for matching law functions (middle
panel) and ROC curves were drawn through predicted pairs
of hit and false alarm rates (bottom panel).

task, we assume that the stimulus-absent
distribution has a variance of 2.0, and the
stimulus-present distribution has a variance of
1.0 (Figure 9, top panel, and also Figure 8).

These values correspond to those from the
signal detection analysis of the Experiment 2
result. The only other assumption we made in
order to generate the predictions in Figure 9
was that the distance between the distributions
was three Z-score units. (The actual value could
be found by fitting the model to data, although
we do not describe the results of fits of the
model here.) By running the model in an Excel
spreadsheet for pairs of arranged reinforcer
probabilities ranging from 0.1/0.9 to 0.9/0.1,
we generated a set of response and reinforcer
proportions for sample-absent and sample-
present trials. (Two extreme reinforcer propor-
tions were also used to generate the far right
data points on the ROC curve in Figure 9.)
These measures were used to calculate loga-
rithms of response and reinforcer ratios (cf.
Figure 7) and hit and false alarm rates (cf.
Figure 6). The middle panel of Figure 9 shows
predictions from the model for the matching-
law analysis, with straight lines fitted to the
predicted data points. Importantly, the func-
tions fitted to the predicted data points have
different slopes, like those for the data in
Experiment 2 (Figure 7). The bottom panel of
Figure 9 shows the predicted hit and false
alarm rates. The ROC curve drawn through
the predicted data points was based on signal
detection theory with an assumption that the
variances of the sample-absent and sample-
present distributions were 2.0 and 1.0 respec-
tively (cf. Figure 9, top panel). The ROC curve
is asymmetrical, like those in Figure 6.

In summary, by assuming that the stimulus-
effect distributions in the White and Wixted
(1999) model can have different variances, we
are able to predict matching law functions with
different slopes, and asymmetrical ROC
curves, both of which characterize behavior
in the yes/no delayed matching task. The
model has only two or three parameters (for
the distance between the stimulus effect
distributions and their variances), and yet
can predict quite complex functions usually
studied in the context of elaborate theories.
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