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This research was conducted during an after-school partnership between a 
University and school district in an economically depressed, urban area. 
The school population consists of 99% African American and Latino 
students. During an the informal after-school math program, a group of 24 
6th-grade students from a low socioeconomic community worked 
collaboratively on open-ended problems involving fractions. The students, 
in their problem solving discussions, coconstructed arguments and 
provided justifications for their solutions. In the process, they questioned, 
corrected, and built on each other’s ideas. This paper describes the types of 
student reasoning that emerged in the process of justifying solutions to the 
problems posed. It illustrates how the students’ arguments developed over 
time. The findings of this study indicate that, within an environment that 
invites exploration and collaboration, students can be engaged in defending 
their reasoning in both their small groups and within the larger community. 
In the process of justifying, they naturally build arguments that take the 
form of proof.  

Generally, researchers concur that reasoning and proof form the 
foundation of mathematical understanding and that learning to reason and 
justify is crucial for growth in mathematical knowledge (Hanna & Jahnke, 
1996; Polya, 1981; Stylianides, 2007; Hanna, 2000; Maher, 2005). For example, 
Ball and Bass (2003) identify mathematical reasoning as a basic mathematical 
skill and indicate that mathematical understanding depends on reasoning. 
The ability to reason is not only  fundamental to learning new mathematics, 
but is also critical to applying that mathematical knowledge to other 
situations. Reasoning is a process that enables the revisiting and 
reconstruction of previous knowledge in order to build new arguments. 
Hence the ability to reason contributes to one’s knowledge growth.  

Maher and Davis (1995) indicate that different forms of reasoning 
coexist within a community of learners. In making one’s argument public, 
input can be provided by others in the community. In a collaborative setting, 
students may question each other’s ideas and help refine them. In this way, 
arguments can be shared and new, revised arguments can be coconstructed. 
Researchers also maintain that participating in discussions about 
mathematical ideas in a community of learners leads to mathematical 
reasoning (Balacheff, 1991; Cobb, Stephan, McClain, & Gravemeijer, 2001; 
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Maher, Powell, Weber, & Lee, 2006). Cobb (2000) stresses the relationship 
between an individual student’s ways of thinking and the overall classroom 
practices in building students’ mathematical understanding. There is 
increasingly more evidence that students successfully can create 
justifications, make and refute claims, and engage in mathematical reasoning 
given a supportive environment (Maher & Martino, 1996; Yackel & Hanna; 
2003, Maher, 2005). However, reasoning that leads to proof is a relatively 
new finding. Examination of the conditions that tend to evoke proof-like 
arguments suggests that this does not happen without inviting students to 
justify their solutions. Students’ arguments vary in completeness and 
elegance. The teacher has a key role in requesting that students explain and 
give evidence of their claims. Teachers are key in encouraging students to 
make their ideas public, and in offering arguments that are convincing to 
their classmates (Yackel & Hanna, 2003).  

There is increasing evidence that students can be successful in reasoning 
and justifying their solutions to problems under certain conditions that 
invite sharing and collaboration (Bulgar, 2002; Francisco, 2005; Francisco & 
Maher, 2005; Maher, 2002, 2005; Maher & Martino, 1996; Mueller, 2007; 
Powell, 2003; Reynolds, 2005; Steencken, 2001). Students’ success in 
justifying their ideas and in engaging in thoughtful mathematical activity 
can be underestimated by teachers whose expectations are that students 
follow certain procedures and apply those procedures to solve routine 
problems. Under these conditions, important opportunities are missed for 
students to learn to rely on their own resources and learn from each other in 
the building and sharing of arguments offered to justify solutions to 
problems.  

The current study adds to the body of work on reasoning by extending 
the research to an informal, after-school setting with a population of 
students where expectations for thoughtful learning have been traditionally 
low. The three-year study investigates the forms of reasoning used by urban, 
middle-school minority students who worked collaboratively in an informal, 
after-school program to construct and justify solutions to problems. Because 
there has not been comparable research with this population of students 
under the informal conditions of the study, our research fills an important 
gap.  

 The participants were 24 urban, sixth-grade students, all volunteers 
from a generic after-school program in which students received general 
home-work assistance from school personnel or were involved in athletic 
activities. Students were recruited from the after-school program to 
participate in the mathematical problem-solving sessions.1 

                                                 
1 The sessions discussed in this paper were part of the “Informal Mathematical 
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Our paper is organised by episodes from sessions in the mathematics 
after-school program. We share transcribed data captured by videos to 
demonstrate the process by which students’ mathematical reasoning 
develops. The informal, after-school setting was designed to provide a 
supportive environment for the children as they worked on strands of open-
ended tasks. On the basis of our findings, we offer suggestions for practice 
for establishing classroom conditions that encourage student collaboration, 
risk-taking, and learning to reason.   

The following questions guided our study:  

(1) What forms of reasoning are used by student in justifying their 
solutions to problems posed? 

(2) How does the input of other students contribute to building and 
justifying arguments? and   

(3) How do the findings from this study compare to other, related work?  

Theoretical Framework 

The Role of Community in Reasoning and Proof   
Research has shown that young children can support their reasoning 

with proof-like arguments (Maher & Martino, 1996; Maher, 2005; Yackel & 
Hanna, 2003). In settings where learners are encouraged to use each other as 
resources, arguments are first built from early, intuitive ideas and later 
extended to more general, formal forms of reasoning.  

Reasoning. Skemp (1979) identified three different types of reasoning:  
instrumental understanding, relational understanding, and formal or logical 
understanding. He described instrumental understanding as occurring 
when one used rules or procedures without a conceptual understanding, 
and relational understanding as transpiring when one was able to deduce 
rules and procedures from general relationships. Finally, Skemp noted 
logical understanding when the learner was able to form strands of logical 
reasoning by connecting mathematical symbols with conceptual ideas. 
Skemp suggested that logical understanding occurs when the learner uses 
his or her relational understanding to explain their reasoning to others or to 
convince others in a community. With his research into the different levels of 
understanding, Skemp laid the framework for the importance of community 

                                                                                                                   
Learning” Project (IML). The IML was directed by Carolyn Maher, Arthur Powell, 
and Keith Weber, was supported by a grant from the National Science Foundation 
(ROLE : REC0309062). The views expressed in this paper are those of the authors and 
not necessarily those of the funding agency. 
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in the role of individual understanding.  
Thompson (1996) defines mathematical reasoning as “purposeful 

inference, deduction, induction, and association in the areas of quantity and 
structure” (p. 267). Yackel and Hanna (2003) extend this definition to 
recognise the social aspects of reasoning and describe it as a communal 
activity in which learners participate as they interact with one another to 
solve mathematical problems. Yackel and Hanna stress that given a 
supportive environment, all students, as early as elementary school, can and 
do make and refute claims and participate in inductive and deductive 
reasoning. At the same time, Yackel and Hanna state that creating a 
classroom atmosphere that supports mathematical reasoning is difficult and 
requires time and effort. 

Justifications leading to proof. Stylianides (2007) defines proof as a 
mathematical argument that builds upon statements or facts that are accepted 
by the community as true, utilises various forms of reasoning shared by the 
community and within their conceptual reach, and is communicated by a 
shared meaning of discourse. Stylianides suggests that the notion of a valid 
mathematical proof in elementary school differs from what is accepted in 
high school based upon the terms or forms of reasoning used. According to 
Stylianides, students are afforded the opportunity to reason mathematically 
when they are allowed to use forms of argumentation to the best of their 
cognitive ability. Stylianides suggests that the notion of proof is dependent 
upon the community in which it emerges, indicating that as students engage 
in reasoning and justifying and communicate their reasoning to others, they 
begin to develop proofs that are appropriate to that community.   

 Francisco and Maher (2005) concur and suggest that in elementary 
mathematics classes the justifications of solutions that are convincing to 
students be emphasised in contrast to providing formal proofs. They suggest 
that in promoting the use of informal justification, students will be afforded 
opportunities to engage in proof-like activities before having access to 
formal notation. A further benefit is that students can learn to grow 
accustomed to the practice of convincing others of the validity of their ideas 
such that “proof-making” can become a fundamental part of problem 
solving. 

Other researchers stress the role of discourse in the mathematics 
classroom in reasoning and proof (Balacheff, 1991; Hanna, 1991; Maher, 
1995, 2008). Balacheff (1991) differentiates between argumentation and 
mathematical proof by describing argumentation as a mathematical 
conversation intended to convince another student of the validity of an 
argument, and proof as an explanation that is accepted by a the larger 
community. In contrast, he defines mathematical proof as meeting “the 
requirement for the use of some knowledge taken from a common body of 
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knowledge on which people (mathematicians) agree” (p. 189). Balacheff 
suggests that argumentation naturally develops into proof as children 
experience the efficiency of argumentation in social interactions with other 
children and adults. Balacheff (1988) also makes a distinction between what 
he calls “proof” and “mathematical proof.” The latter is that used in the 
larger mathematical community, while the former is the more informal lines 
of reasoning used by students in a classroom community. From this 
perspective, it might be argued that in a mathematical community, 
justification leads to proof. 

The Role of Collaboration and Discourse in Mathematical 
Communities  

Vygotsky (1978) hypothesised that students internalise the discussions 
that occur in group contexts. He suggests that what learners “can do with 
the assistance of others is more indicative of their mental development than 
what they can do on their own” (p. 85). His work suggests strong benefits 
for collaboration in learning. Cobb, Wood, and Yackel (1992) build on this 
claim by stressing the role of social interaction in the construction of 
mathematical knowledge and calling attention to the role of discussions in a 
mathematical community.  

One difference between formal and informal settings in the 
development of knowledge may be the formation of a classroom community 
that supports the sharing of ideas and knowledge. Communication with 
others in learning communities provides other opportunities for learning. 
Goos (2004) describes mathematical communities as communities of 
mathematical inquiry in which students learn to talk and work 
mathematically by participating in mathematical discussions, proposing and 
defending arguments, and responding to the ideas and conjectures of their 
peers. In building such communities the teacher models desirable behaviors, 
establishes expectations and sociomathematical norms, and engages 
students through thoughtful tasks and careful questioning (McCrone, 2005; 
Yackel & Cobb, 1996).  

While one view of collaboration involves learners supporting each other 
by offering missing pieces of information needed to solve the problem, a 
more powerful form of collaborative work involves group members relying 
on each other to generate, challenge, refine, and pursue new ideas (Francisco 
& Maher, 2005). With this type of collaboration, rather than piecing together 
their individual knowledge, the students build new ideas and ways of 
thinking as a group. 

Martin, Towers, and Pirie (2006) stress the importance of the social 
context of the learning environment in cultivating what they call collective 



12 Mueller & Maher  
 

mathematical understanding, that is, understanding that occurs when a group 
of learners work together on a mathematical task. They suggest that in 
supporting developing coactions, that is, actions carried out by an individual 
while being dependent on the actions of others in the group, learning is 
facilitated. They differentiate coactions from student interactions to indicate 
the importance of mutually acting with the ideas and actions of others.   

That the classroom micro culture or community in which learning 
occurs has a major influence on the meanings that students construct is well 
established. When students engage in thoughtful mathematical discussions 
in a rich social environment, student ideas are made public and shared, and 
sometimes modified and agreed upon. These activities are fundamental to 
the building of a successful and active mathematical community of learners.  

Conditions for Promoting Mathematical Reasoning  
Several years ago, Yackel and Hanna (2003) emphasised that we were 

only beginning to understand how students’ mathematical reasoning 
develops and learn about what type of environments support this 
development. Over the years, however, progress has been made. Through 
extensive analysis of data from cross sectional studies and a longitudinal 
study, now in its 23rd year, Francisco and Maher (2005) found that certain 
conditions are necessary in promoting mathematical reasoning. Those 
conditions were implemented in the study on which we report here: the 
posing of strands of challenging, open-ended tasks, establishing student 
ownership of their ideas and mathematical activity, inviting collaboration, 
and requiring justification of solutions to problems. Recognising that these 
conditions need to be in place to promote an environment for student 
reasoning, we describe each of these factors in more detail as follows: 

Tasks. Francisco and Maher (2005) stress the crucial role of the given task 
in sustaining student engagement in problem solving and promoting sense-
making and mathematical reasoning. Presenting students with complex 
tasks, rather than scaffolding a series of simple tasks, stimulates 
mathematical reasoning and leads to the building of mathematical 
understanding. Francisco and Maher suggest that in addition to using 
challenging tasks, the tasks should be presented to students as strands of 
related problems that can be revisited over time and in different contexts, 
thus enhancing students’ opportunities to overcome obstacles in problem 
solving. Doerr and English (2006) suggest that tasks be designed to engage 
students in important mathematical problem situations such that their 
representations and justifications offer insight into their mathematical 
thinking. In addition, they indicate that tasks should allow for students to 
self-evaluate their solutions and reflect on their own reasoning. 
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Supportive environment. Seating students in small, heterogeneous groups 
affords them the opportunity to build ideas collaboratively, test out their 
own conjectures with a non-threatening audience and hear the ideas and 
justifications of others. Offering students ample time to explore allows them 
to internalise their own ideas and those of others and test out alternative 
theories when necessary.  Without time pressures, students can lead their 
own explorations and formulate their own challenges. Inviting students to 
share ideas with the whole class allows them to hear other ideas and 
strategies and make connections with their own thoughts. Finally, requiring 
students to be the arbitrators of what makes sense gives them the 
responsibility for evaluating their own justifications and those of their peers 
and ultimately leads to mathematical autonomy.  

The role of the facilitator. Maher (1998) identified characteristics of 
teachers/researchers in facilitating sessions that promote problem solving 
and reasoning. One is to encourage students to interact with one another.  
Another is to elicit from students representations of their mathematical ideas 
and offer tools for multiple representations. The importance of eliciting from 
students their explanations and encouraging students to provide 
justifications cannot be overemphasised. By building a classroom climate 
that promotes student discourse and providing time and flexibility for the 
sharing of ideas, teachers allow students to share representations among 
each other. Providing opportunities for students to revisit ideas and connect 
these to new ideas facilitates transfer in learning.  

Manipulatives as tools for model building. Making manipulative tools 
available to students for building physical models in problem solving 
encourages and promotes the exploration, representation, and 
communication of mathematical ideas (National Council of Teachers of 
Mathematics [NCTM], 2000). These tools allow students to manifest their 
thinking and share their representations with others. They also support the 
building of multiple representations and justifications of the ideas 
represented. Manipulatives as tools for model building can further support 
students’ presentation of ideas and act as a “prop” in communicating 
students’ developing reasoning. In this study Cuisenaire rods were available 
as tools for students to build models of solutions to the problem tasks.  

A combination of student, teacher, task, and environment promotes 
understanding in the mathematics classroom. A teacher works regularly to 
facilitate an environment that offers students time for exploration and 
reinvention. In this study, working to keep intact the conditions described 
above, we document the forms of reasoning students used to convince each 
other and the researchers of the reasonableness of their solutions. We report 
on the development of reasoning that emerged as students provided 
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justifications for their solutions over five sessions, each about an hour and a 
half in duration.  

Method 

Participants  
The 24 participants for this study consisted of volunteers who were 

beginning sixth grade. They represented a wide range of math backgrounds, 
ranging from those who were enrolled in remedial mathematics to those 
who succeeded in school math.2 Eight students, four males and four females, 
were the focus group for the study. All eight participants scored in the below 
proficient category on the eighth-grade state assessment exam.  

Data Source and Setting 
During the four week period, for five, 60-75 minute sessions, the 

participants worked in small groups on a strand of tasks dealing with 
fractions. All sessions were videotaped with four different camera views. 
Three of the cameras focused on two groups of students each and one of the 
cameras, the “roving” camera, followed the facilitators as they moved from 
table to table and also captured the presentations at the overhead projector. 
Video recordings and the transcripts were analysed using the analytical 
model outlined by Powell, Francisco, and Maher (2003). The video data were 
described at frequent intervals; critical events (episodes of reasoning and 
coconstruction of arguments) were identified and transcribed, and codes 
were developed for flagging solutions offered by students and the 
justifications given to support these solutions. To ensure dependability and 
validity another researcher verified coding of the data. If necessary a third 
researcher was asked to resolve disagreements. Researcher observation 
notes were used to supplement the transcripts and assist in constructing a 
story line. A researcher/graduate assistant was assigned to each table to take 
field notes. At the end of each session the facilitators, researchers, and 
graduate students met to discuss what transpired during the session, share 
researcher field notes, and plan for the next session. In addition, 
triangulation was achieved by using student work and explanations to make 
sense of the models that they created and written accounts of their 
reasoning. Students were asked to record all work on transparencies and 

                                                 
2 The group of students who volunteered was representative of the overall 
population of sixth graders of that school. However, the research team deliberately 
chose not to identify students according to earlier success in school mathematics. 
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these were collected at the end of each session.  

Tools 
Cuisenaire rods were available for students to build models of their 

solutions to the tasks. A set of Cuisenaire rods, as shown in Figure 1, 
contains 10 coloured wooden or plastic rods that increase in length by 
increments of one centimetre. For these activities, the rods have variable 
number names and fixed colour names. As part of introducing students to 
working with the rods, the researchers explained that the rods are given 
permanent colour names. These names, along with the rods’ respective 
lengths, are:  white (1 cm); red (2cm); light green (3 cm); purple (4 cm); 
yellow (5 cm); dark green (6 cm); black (7 cm); brown (8 cm); blue (9 cm); 
orange (10 cm). Students were introduced to rods of different lengths by 
placing rods along side each other  and making a “train”. Figure 2 shows a 
“train” of a purple and an orange rod. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Staircase model of rods. 
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Figure 2. A train of a purple rod and an orange rod. 

Tasks 
Students were offered time to explore and discuss problem tasks. The 

tasks investigated by the students were developed from earlier research with 
fourth- and fifth-grade students. These tasks were found to invite 
collaboration and elicit justifications of solutions to problems, generating a 
variety of forms of reasoning.3 Consequently, a set of tasks from this strand 
was used as an introduction to the IML program. 

Unlike the students from the earlier study, who investigated fraction 
tasks before they were introduced formally in the school curriculum, the 
sixth-grade students in the study we report here were introduced to fraction 
rules and procedures as part of their school mathematics in Grade five. The 
research team was aware that the students had little, if any, conceptual 
understanding of the fraction ideas and operations that they were taught the 
previous year.  

 During each session, problems from the strand were presented to the 
entire group of 24 participants. For example, in Session 2, the following 
problem was presented:  

What number name would you give to the dark green rod if the light 
green rod is called one? Discuss the answer with your group. (Maher, 2002.)  

Groups were then provided time to investigate their solutions and make 
claims, first in their small groups and then with the whole class. Once each 
group had completed the task, they were invited to the overhead projector 
to share their findings with the larger group. During these whole group 
discussions, students discussed their ideas, challenged each other, and had 
opportunity to reflect on and revise earlier solutions. Table 1 outlines the 
tasks that were posed during each session. 

                                                 
3 See Steencken and Maher (2002, 2003). 

Purple  Orange  
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Table 1 
Challenges Posed During the First 5 Sessions 

Date Tasks 
11/12/03 1. If I gave the yellow rod the number name five, what 

number name would I give to the orange rod? 
2. Suppose I gave the orange rod the number name four, 

what number name would I give to the yellow rod? 
3. If I call the orange rod one, what number name would I 

give to the yellow rod? 
4. If I call the white rod two, what number name would I 

give to all of the  other rods? 
11/13/03 1. Suppose I called the dark green rod one, what number 

name would I give to the light green rod? 
2. Someone told me that the red rod is half as long as the 

yellow rod, what do you think?   
3. If I call the blue rod one, I want each of you to find me 

a rod that would have a number name one-half. 
11/19/03 1. Convince us that there is not a rod that is half the 

length of the blue rod. 
2. Is 0.3 another name for the light green rod? 
3. If I call the blue rod one, what number name would I 

give to the white rod?  What name would I give to the 
red rod? 

11/20/03 1. If I called the blue rod one, then what number name 
would I give to the red rod?  What name would I give 
to the light green rod? 

2. If I called the blue rod one, what number names would 
I give to the rest of the rods? 

12/3/03 1. If I called the orange rod one, what number name 
would I give to the white rod?  What name would I 
give to the red rod? 

2. If I called the orange rod ten (fifty), what number name 
would I give to the white rod? 

3. I want to know which is bigger, one-half or one-third 
and by how much. 
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Analysis 
The following dimensions were used to code for arguments and 

justifications: form of reasoning (e.g., direct; by contradiction; by cases; by 
upper and lower bounds) and validity (e.g., warrants; valid inference; 
counter argument). Each form of reasoning was defined for the purpose of 
this study; these definitions are provided in the following section. While 
coding, it was noted that, at times, students exhibited faulty reasoning and 
offered incomplete arguments. Consequently, these arguments were 
included as subcodes. At times students would offer an argument that 
addressed a classmate’s faulty argument rather than the original question. In 
this case, the arguments were flagged and coded as counter arguments.  

Direct reasoning. Direct reasoning is used to establish the truth (or 
falsehood) of a given statement based on a combination of established facts.  
In this model, it is first assumed that p is true, and then steps are taken to 
arrive at the conclusion that q is true (Fletcher & Patty, 1995). A direct proof 
takes on the form:  “If p then q.” Often, in a direct proof of the statement 
pq, the transitive nature of implication is employed:  if pr and rq then 
it follows that pq.  

Reasoning by contradiction. Reasoning by contradiction, also known as the 
indirect method, is based on the agreement that whenever a statement is 
true, its contrapositive is also true; or that a statement is logically equivalent 
to its contrapositive. For example, p  q is equivalent to (not q)  (not p); so 
if (not q)  (not p) is true, then p  q is also true (Cupillari, 2005).  

Reasoning by cases. In the five sessions, students often considered 
different cases with the Cuisenaire rods when forming an argument. For the 
purpose of this study, justifications were coded as reasoning by cases when 
students defended an argument by defending separate instances. They 
defended an implication in the form p  q by identifying propositions p1, 
p2, …pn and established each of the implications:  p1 q, p2  q, pn  q.  

Reasoning using upper and lower bounds. Students sometimes create upper 
and lower bounds to argue about fraction lengths and equivalences. An 
upper bound of a subset is an element which is greater than or equal to every 
element in that set. A lower bound of a subset is an element which is less than 
or equal to every element in the set (“Upper and lower bounds”, 2008). In 
addition, when reasoning using a lower and upper bound argument, it must 
be also established that there are not elements in the set in between the 
bounds. In using upper and lower bounds, a student defines the upper and 
lower boundaries or limits of a class of numbers or mathematical objects. For 
example, for the set of numbers {1<x<4}, the upper bound of the set is 4 and 
the lower bound is 1, since all the numbers in the set are contained within 
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the two bounds. After these bounds have been defined, the student reasons 
about the objects between these bounds. This form of reasoning is often used 
to show that the set that is defined as all objects between the two identified 
bounds is empty (Yankelewitz, 2009). 

Arguments were coded to indicate to what extent, if at all, the reasoning 
that was exhibited built upon or challenged previous students’ arguments. 
The codes that emerged in this category were organised into three subsets:  
building on each other’s ideas, questioning each other, and correcting each 
other. As the data were analysed, subcodes emerged. It was noted that in 
building on each other’s ideas, students expanded upon, redefined, and 
reiterated each other’s arguments.  

Results 
In order to address the research questions, the results section is divided 

into two categories:  justifying solutions and community influences. In each 
of these sections we present selected episodes from the five sessions of the 
after-school program as evidence of students’ presentation of ideas and 
argumentation. 

Justifying Solutions 
Episode 1, Session 2, finding a rod named one-half when the blue rod is named 

one. While attending to the task of finding a rod whose length was half of 
that of the blue rod the students produced arguments that represented four 
forms of reasoning. Each of these arguments is outlined below. 

While working in their small group, Michael and Shirelle each built a 
model of a purple rod and a yellow rod lined up next to the blue rod and 
both students used direct reasoning to show that the purple and yellow rods 
were equivalent to half of the length of the blue rod. Dante and Chanel 
offered counter arguments to this invalid reasoning by showing that the 
purple rod was too short and the yellow rod was too long. While attempting 
to convince Michael and Shirelle that a rod named one-half did not exist 
given that the blue rod was named one, Dante and Chanel formulated a 
justification based on upper and lower bounds (described below). 

At an adjacent table, Chris, Jeffrey, Brittany, and Danielle worked on the 
same task. While his group members began the task by building models of 
rod combinations equivalent to the length of the blue rod, Chris explained 
that one-third of the blue rod could be shown, but not one-half. Chris 
reasoned using contradiction to show that the blue rod did not have a rod 
equivalent to half of its length. He lined up a train of nine white rods next to 
the blue rod and explained to his group, “There is not a rod that is half of the 
blue rod because, there’s nine little white rods you can’t really divide that 
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into a half so you can’t really divide by two because you get a decimal or 
remainder so there is really no half, no half of blue because of the white 
rods.”  He built the model shown in Figure 3 to illustrate his justification.  

 

 

Figure 3. Chris’s model of nine white rods lined up next to the blue rod. 

As his group members offered different arguments, Chris refined his 
contradiction four times before presenting it to the whole class. Chris posed 
his arguments as follows: (a) “If you take out four that’s an even number but 
if you put the four back, that’s not a half because it’s nine and nine is an odd 
number”, (b) “You can’t find a half of the blue one because if you put all 
white you only have nine so for nine you can’t really do it”, (c) “Overall you 
can’t do it because if you use a white one it is an odd number so you can’t 
divide by two”, (d) “The thing we should say is that since we put the white 
cubes and we got an odd number then if you have an odd number you can’t 
divide by two so you get one-half so you get a decimal or a remainder so 
you can’t really divide it, right?”  During the whole class discussion Chris 
explained, “There’s nine little white rods you can’t really divide that into a 
half so you can’t really divide by two because you get a decimal or 
remainder so there is really no half, no half of blue because of the white 
rods.” 

Following Chris, Justina explained that her strategy of showing that the 
blue rod does not have a rod that is equivalent to half of its length was to 
instead find all of the rods that do have a rod equal to half of their length. 
Justina presented the diagram show in Figure 4. Justina used a case approach 
to justify her solutions and drew all of the rods that have a half next to the 
two rods that make up the half, for example, two yellow rods lined up next 
to an orange rod. Justina explained that all of the rods in her diagram had a 
rod that was equivalent to half of their length. She listed all of the cases of 
these rod combinations and named them “singles”. Justina explained, “I was 
just making half of the color rods, I just made this picture, so like um, half of 
the orange was yellow, half of the brown was purple, half of dark green was 
light green, and the same for those two.” 

W W W W W W W W W 

Blue 
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Figure 4. Justina’s models of “singles.” 

In response to Chris’s argument, Dante explained that instead of using 
the model of nine white rods lined up next to the blue rod he used a model 
of a purple rod and a yellow rod. He used the model illustrated in Figure 5 
to show that the purple rod could not be considered to be half of the blue 
rod because the combination of two purple rods was not equivalent to the 
length of the blue rod (they were too short). Likewise, the yellow rod could 
not be named half of the blue rod because the combination of two yellow 
rods was not equivalent in length to the blue rod. He explained that the 
yellow rod is one white rod too long to be a half the length of the blue rod 
and the purple rod is one white rod too short. When asked why this 
persuaded him that there was not another rod whose length was half of the 
blue rod, Dante responded, “Because we tried all we can because if usually 
for the blue piece, it would usually be purple or yellow but yellow would be 
one um one white piece over it and the pink would be, I mean purple would 
be one white piece under it.”   

Yellow Yellow 

Brown  

Purple  Purple  

Dark Green  

Lt. Green  Lt. Green  

Red Red 

Red 

W W 

Purple  



22 Mueller & Maher  
 

 
 
 

Figure 5.  Dante’s upper and lower bound model. 

Chanel backed up Dante’s justification and displayed the model 
illustrated in Figure 6, which shows the discrepancy of one white rod, using 
two yellow rods as an upper bound and two purple rods as a lower bound., 
indicating: “this is blue and the yellow is a little, the yellow is a little bit 
more than a half and the purple is shorter than a half.” 
  
 
 
 

Figure 6. Chanel’s upper and lower bounds model. 

Analysis. This task elicited multiple forms of reasoning. It required that 
students show that the proposed rod did not exist. Although Michael and 
Shirelle attempted to use the direct relationship between the length of the 
yellow rod and purple rods and the blue rod, they seemed to not take into 
account the precise meaning of one half.  Their use of direct reasoning was 
based on a faulty premise. Dante and Chanel used the upper bound of 
yellow and the lower bound of purple to counter this faulty argument. 
During whole-class presentations they completed this upper and lower 
bounds argument by stating that there was not a rod whose length was in-
between the purple and yellow rods and showed the difference as being one 
white rod (the smallest rod in the set).  

Chris’s group members attempted to find all of the rods that did have a 
rod equivalent to half of its length as an exhaustive strategy. While they 
were building these models Chris explained his model based on the nine 
white rods representing an odd number using reasoning by contradiction. It 
seemed to be important to Chris that his partners shared his reasoning and 
therefore he restated his strategy five times, each time strengthening his 
original argument. Justina’s group took a different approach by focusing on 
the rods that did have a rod equivalent to half of their length. They used the 
fact that the blue rod did not fit into this category as proof that when the 
blue rod was named one there was not a rod whose name was one-half and 
built an argument based on cases.  
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Yellow Yellow 

Purple  Purple  

Yellow Yellow 
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While working on the task and later during whole-class sharing the 
students did not seem concerned that they had built different models and 
formed justifications that differed from those of their peers. Rather, they 
used input from the other arguments to strengthen their own.  

Episode 2, Session 4, naming all of the rods when the blue rod is named one. As 
students worked on the task of naming all of the rods, many were 
challenged with the naming of the orange rod as it resulted in an 
“improper” fraction. After working on the problem for a length of time 
students were asked to come up to the overhead to share their solutions. 
Lorrin named the orange rod by incrementally increasing by one-ninth and 
explained, “Before, we thought that because we knew that the numerator 
would be larger than the denominator and we thought that the denominator 
always had to be larger but we found out that that was not true. Because two 
yellow rods equal five-ninths and five-ninths plus five-ninths equal ten-
ninths.”  She used direct reasoning to show that the length of two yellow 
rods was equivalent to the length of the orange rod. She explained that a 
yellow rod was named five-ninths so two yellow rods (five-ninths plus five-
ninths) would be called ten-ninths (an orange rod).  

Kia-Lynn also used direct reasoning and explained that when a white 
rod was attached to a blue rod, the length was equivalent to an orange rod. 
She built a train of a blue rod and a white rod next to an orange rod, shown 
in Figure 7, and named the orange rod ten-ninths. Kia-Lynn explained, “If 
you have one white rod and you add it to the blue, it’s one-ninth plus one is 
one and one-ninth and so if the blue rod and one white. If you put them 
together then this means that it’s ten-ninths also known as one and one-
ninth.” 

 
 
 

 

Figure 7. Kia-Lynn’s model for naming the orange rod one and one-ninth. 

Finally, Dante shared his strategy of using two purple rods and a red 
rod to name the blue rod ten-ninths by adding four-ninths, four-ninths, and 
two-ninths.  

Analysis. Although all of the presenters in this episode used direct 
reasoning, they each built a different, but equivalent, model on which to 
base their arguments. Lorrin used the relationship between the blue rod and 

Orange  

Blue  W 



24 Mueller & Maher  
 

the two yellow rods to show that five-ninths plus five-ninths is equivalent to 
ten-ninths. Kia-Lyn and Kori built a model with a train of a blue rod and a 
white rod lined up next to the orange rod and directly reasoned that one-
ninth plus nine-ninths is equivalent to ten-ninths. They also used this 
relationship to establish the other name for ten-ninths or one and one-ninth. 
Finally, Dante presented the model discussed above, reasoning that four-
ninths plus four-ninths plus two-ninths is equivalent to ten-ninths.  

Episode 3, Session 5, naming the red rod when the orange rod is named one. 
While students were working on this task, the researcher pointed out that 
some students were naming the red rod one-fifth, some were calling it two-
tenths, and one student reported that the white rod was equivalent to half of 
the red rod. The researcher asked the class if some, none, or all of these 
statements were true. Chris reported that the statements were true. He used 
direct reasoning to show that the length of ten white rods was equal to the 
length of an orange rod, and the length of five red rods was equal to the 
length of an orange rod. He concluded that the red rod would be named 
one-fifth. 

Chris:  It’s true because if ten white ones equal an orange one, five red 
ones equal an orange one and the red one is one-fifth.  

Dante then named the red rod two-tenths. He explained using direct 
reasoning: “I think that red would be two-tenths because two times; you 
need five reds to get to make the orange one, so two times five would equal 
ten.” The model that Dante used to explain his reasoning is shown in Figure 
8. The researcher asked Dante to explain his idea to the class. 

Dante: I think this would be two-tenths, that red would be two–tenths 
because two times, cuz you need five reds to get to make the 
orange one so two times five would equal ten so that’s why I think 
it would be two-tenths. 

 

 
 

Figure 8. Dante’s model used to name a red rod two-ninths.  

Analysis. During whole-class presentations Chris used direct reasoning 
to name the red rod one-fifth. He created a model depicting the five red rods 
lined up next to the orange rod and explained that since five red rods were 
the same length as the orange rod, one red rod would be named one-fifth. 
Although he included white rods in his model, he did not use them in his 
argument. Dante also used direct reasoning to name the red rod two-tenths, 
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although his argument was structured differently than Chris’ direct 
argument. Dante established that five red rods were the same length as the 
orange rod and the red rod was equivalent to two white rods; he then used 
multiplication to establish the denominator of ten. Dante’s model is shown 
in figure 3. 

The Influence of the Community 
Episode 4, Session 2, finding a rod named one-half when the blue rod is named 

one. As described previously, during the second session of the after-school 
program the students were asked to find a rod whose number name was 
one-half when the blue rods was named one. Michael and Shirelle each built 
a model of a purple rod and a yellow rod lined up next to the blue rod and 
both students attempted to use direct reasoning to name the yellow rod and 
purple rod one-half. Dante and Chanel offered counter arguments to this 
invalid reasoning by showing that the purple rod was too short and the 
yellow rod was too long. Dante argued, “If you put two purple together it’s 
still smaller than the other, than the blue.” He then explained, “The yellow 
rod takes up more space than the purple rod and to be halves they should be 
the same.”  Finally, he said, “Purple is smaller than yellow so it can’t, this is 
not a half, yellow might be a half to orange but it’s not a half to blue, purple 
is not a half either to blue.” Based on these counter arguments Dante and 
Chanel formulated a justification based on upper and lower bounds (described 
above). 

Analysis. Michael and Shirelle used the direct relationship between the 
length of the yellow rod and purple rods and the blue rod to name these 
rods one-half. They based this argument on the fact that the two rods were 
equivalent in length to the blue rod ignoring the part of the definition of 
one-half that states that the two “halves” must be equivalent. Thus they used 
direct reasoning based on a faulty premise. Dante and Chanel countered this 
faulty reasoning using the definition of one-half in an attempt to convince 
the two students that neither the yellow rod nor purple rod fit the definition 
of one-half of blue. As they justified this counter argument they described 
the upper and lower bounds of the rod that could be half of the blue rod.  

Episode 5, Session 4,  naming all of the rods when the blue rod is named one. In 
order to represent the relationship, Chanel created a staircase of rods of 
increasing lengths and named them beginning with one-ninth (white rod) 
and building incrementally by ninths. After naming the blue rod nine-
ninths, she stopped at the orange rod and said she had to think about it and 
asked Dante what he thought the orange rod would be called. He 
immediately replied ten-ninths but then changed his mind and called it one. 
He then said it would start a “new one.” Michael called the orange rod a 
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whole and Dante named it one-tenth.  
As the students were drawing the staircase of rods, Dante told the group 

that he heard students at other tables calling the orange rod ten-ninths. 
Michael insisted that they were incorrect, since the orange is equivalent in 
length to ten white rods. Chanel agreed and said that the denominator 
cannot be smaller than the numerator and Dante concurred. When asked to 
explain what he was thinking about the orange rod, Dante tried to convince 
one of the facilitators that the orange rod “starts a new one” and would 
therefore be named one-ninth. When reminded that the white rod was 
named one-ninth, Dante used the model of the staircase to name the orange 
rod ten-ninths. He explained that the length of ten white rods is equivalent 
to the length of an orange rod and since a white rod is called one-ninth the 
orange rod will be called ten-ninths. Even after physically building his 
model and seeing that the orange rod would be named ten-ninths, Dante 
asked, “But how can the numerator be bigger than the denominator?” 

Later during the same session, students were asked to share their 
findings with the whole class. After a few other groups shared their 
strategies, Dante shared his model. He reported that he began with the white 
rod and placed the white rods up to the orange rod, using a similar strategy 
as one of his classmates. He said that he then found a different way to name 
the orange rod by using two purple rods and a red rod, as shown in Figure 
9, and explained, “Since four and four are eight so which will make it eight-
ninths right here and then plus two to make it ten-ninths.” 

 
 

Figure 9. Dante’s model for naming the orange rod ten-ninths. 

Analysis. In this episode there was a conflict between what the Dante 
built (a correct solution) and what he claimed to have remembered from his 
fifth-grade fraction learning. In initiating a discussion with his group he 
suggested that an alternative solution might exist. His partners discounted 
this idea and Dante seemed to agree. When the researcher asked Dante what 
number name he gave to  the white rod (one-ninth), Dante used his model 
and direct reasoning based on the incremental increase of one-ninth to name 
the orange rod ten-ninths. After listening to the other presenters explaining 
their solutions and models, Dante shared his solution. Instead of presenting 
the argument he built with his group (increasing from one-ninth to ten-
ninths), Dante built an alternative model using two purple rods and a red 
rod and using direct reasoning to explain that the sum of four-ninths (purple 
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rod) plus four-ninths plus two-ninths (red rod) is equivalent to ten-ninths. 
By being able to explain using a different model, Dante solidified his own 
understanding and convinced himself as he was attempting to share his 
justification with classmates.  

Episode 6, Session 5, naming the white rod when the orange rod is named one. 
Herman initiated the task by naming the white rod ten and using direct, 
although faulty, reasoning to explain that the orange rod was equivalent to 
ten white rods and therefore the white rod would be called ten. The 
researcher asked the class if they agreed with Herman. Dante challenged 
Herman and compared the task to that of naming the rods when the blue 
rod was named one.  

Dante:   Because I thought, since, like we did with the last one as blue as 
one, as blue as one and the white one was uh [he comes to the 
overhead projector (OH)] cuz we used to say that the blue was 
one so I thought that if the, if the that we called the white one one-
ninth, why can’t we still call it with the orange one, one-tenth 
though, cuz even though the orange one is one white one bigger 
than it … we should still….so like this is nine …this is ten ..that’s 
why I think it should be one-tenth, I think it should be called one-
tenth. 

When Herman disagreed, Dante said that he could “prove it” and used 
the model, shown in Figure 10, that Herman had built at the overhead 
projector.  

Dante I can prove…[R1 asks everyone to listen to Dante’s proof] you 
have it up here already… because he already has it up here – see 
you need ten of these (white) to equal one orange rod. If we take 
nine of them away [Dante does this on the overhead projector] 
which will leave you with one-tenth and then if you keep if you 
add another one it will be two-tenths, three-tenths all the way up 
to ten. Which is one whole.  

R1 So let me see if I understand what Dante is saying, you’re saying 
that this is one-tenth and then if you add another one it would be 
one-tenth 

 
 
 
 

Figure 10. Herman’s model for naming the white rod  
when the orange rod was named one. 

The researcher again asked Dante if he agreed and Herman agreed with 
Dante and explained why the white rod would be named one-tenth in his 
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own words.  
R1  Ten-tenths is another name for one. What do you think about 

that Herman?   
Herman   I agree 
R1  Why?  What changed your mind? 
Herman    Because, because each one of these (white) equals one-tenth 

and if this (orange) is one whole. 

Analysis. Herman built a model of ten white rods lined up next to the 
orange rod and used direct, although faulty, reasoning to name the white 
rod ten. Dante challenged this solution and justified his claim using an 
analogy based on the exploration from the previous session (when the blue 
rod was named one and the white rod was named one-ninth). He explained 
that with this task nine white rods were the same length as the blue rod and 
therefore the white rod was named one-ninth. He then used direct reasoning 
and explained that the orange rod was one white rod longer than the blue 
rod and therefore the white rod would be named one-tenth. When Herman 
was still not convinced, Dante used the model (of ten white rods lined up 
next to the orange rod) that Herman had constructed on the overhead 
projector to justify his response. He explained that if he removed nine white 
rods from the model the one remaining rod would be named one-tenth. He 
then backed this up by showing the incremental increase in white rods by 
adding one-tenth each time he replaced a white rod until he reached ten-
tenths. When asked to explain, Herman was able to explain Dante’s solution 
in his own words.  

Episode 7, Session 5, naming the red rod when the orange rod is named one. 
One of the students (as reported previously) named the red rod one-fifth 
using a model of ten white rods and five red rods lined up alongside the 
orange rod. The researcher asked the rest of the students if they agreed with 
this number name. Chanel stated that she agreed that the white rod was half 
of the red rod and explained the equivalence (the length of two white rods 
was equivalent to the length of the red rod). She stated that if one of the 
white rods was removed, the other white rod would be half of the red rod 
and named the red rod one-half.  The researcher asked for the class’s 
opinion about Chanel calling the red rod one-half (when the orange rod was 
called one) and Dante said that he disagreed. He explained that the length of 
the red rod could not be half of the length of the orange rod because the 
length of the yellow rod was half of the length of the orange rod. He asked, 
“How could red be a half of orange if it takes five of them instead of two?” 
Dante explained that he recognised Chanel’s source of error and attempted 
to explain it to her using an analogy by comparing the relationship using 
whole numbers.  

Analysis. Chanel accepted the relationship between the red and white 
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rods but erroneously used this relationship to name the red rod one-half. 
Dante then used a counter argument to correct Chanel based on the 
previously accepted relationship between the yellow rod and the orange 
rod. He contradicted Chanel’s argument by showing that if the length of the 
yellow rod was equivalent to half of the length of the orange rod then the 
smaller red rod could not share this characteristic.  

Conclusion 

Emerging Forms of Reasoning 
During the five sessions, there is evidence that students naturally used 

different types of arguments in justifying their solutions to the problem 
solving tasks: direct reasoning, reasoning by contradiction, upper and lower 
bounds, and case-based reasoning correctly to support their solutions. 
Episode 1 highlights the four different forms of reasoning (direct, 
contradiction, cases, and upper and lower bounds) that the students used 
when attending to a single task. It seems as though students’ personal styles 
of thinking played a role in the type of representations and arguments that 
they built. Based on their individual mode of sense-making the students 
built alternative models and offered alternate forms of reasoning. The nature 
of the task elicited these different forms of reasoning. In fact, the students 
were asked to find a solution that did not exist and therefore were engaged 
in the act of disproving. Students seemed eager and confident to share their 
various opposing arguments, first with their small groups and later with the 
whole class.  

When a task elicited the same form of reasoning, students offered 
different arguments with different rod models as backing. For example, in 
Episode 3, when naming the red rod (when the orange rod was named one), 
Chris and Dante both used direct reasoning and built a similar model. 
However, they displayed rod models for these arguments differently and 
found two different number names for the red rod (one-fifth and two-
tenths). Likewise, in Episode 2 when naming the orange rod ten-ninths, the 
three students presenting arguments all used direct reasoning, however, 
they built four different models and presented different rod models. Again, 
students’ particular models influenced their fraction representations, 
introducing them to a way of thinking about equivalent fractions.  

The Influence of the Community on Reasoning  
Examining the data across five sessions, we found that sometimes a 

student’s faulty argument was pivotal in building meaning and promoting 
deeper understanding. The act of presenting justifications to the community 
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and listening to the arguments of others seemed to prompt students to 
challenge each other’s assertions which in turn led to stronger arguments. 

Revisiting previous misconceptions. In analysing the sessions we found 
evidence that listening to the arguments of others prompted students to 
revisit previous misconceptions and challenged previously learned “rules”. 
In episode 5, Dante overheard another group naming the orange rod ten-
ninths and this planted a seed in his head. He then needed to convince 
himself and his partners that this name was reasonable. Even after using the 
physical model and incrementally building the white rods by ninths, Dante 
was not fully convinced. However, after listening to his classmates present 
their arguments using two different explanations, Dante was able to justify 
the name ten-ninths using two models and justifications.   

Confidence in challenging arguments. In Episode 4, Dante and Chanel 
challenged Michael and Shirelle using a counter argument in an attempt to 
convince them that the yellow and purple rods could not be named one-half 
when the blue rod was named one. This led Dante and Chanel to the 
creation of a complete upper and lower bounds justification. Chris 
challenged himself to convince his partners that his argument made the 
most sense and this led him to refine his argument five times.  

In Episode 6, Herman named the white rod ten (when the orange rod 
was named one). Dante challenged this naming by first comparing the task 
to the prior relationship between the white rod and the blue rod (when the 
blue rod was named one the white rod was named one-ninth) and then 
using direct reasoning to show the incremental increase from one-tenth to 
ten-tenth using Herman’s physical model. Later in the session, Episode 7, 
when Chanel named the red rod one-half, Dante corrected her by offering a 
counter-argument in the form of a question (“How could red be a half of 
orange if it takes five of them instead of two?”). He then created an analogy 
using whole numbers to explain the relationship; finally, he switched back to 
fractions and used multiplication.  

Connections to Previous Studies 
The eliciting of a variety forms of reasoning in justifying solutions to the 

tasks is consistent with the findings of previous studies in other contexts and 
with students of different ages. The sixth-grade students in this study, 
similar to the students in previous studies, displayed convincing arguments 
representing various forms of (Maher, 2005). However, this study differed 
from the previous studies in three ways. First, the students in the other 
studies had been working together for years in an established mathematical 
community while the students in this study worked together in fewer 
sessions time of approximately nine hours of contact together. Yet, as early 
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as the first session, the students engaged in mathematical discourse and 
appeared to enjoy it, as evidenced by their continuation in this volunteer 
program. Second, the students in this study joined the study in Grade 6. All 
came from a disadvantaged, urban environment in which open-ended, 
group problem solving was not available in regular classrooms. It is 
noteworthy, also, that the students in the study were not previously 
successful in school mathematics. In fact, they were categorised as below 
proficient in performance on the state mathematics assessment. Nevertheless, 
in our study, they exhibited well-formulated, valid reasoning in their 
solutions to the problems. Third, this study was conducted after-school, in 
an informal, environment rather than in the context of the school 
mathematics classroom. In the after-school sessions, students were 
encouraged to share ideas, collaborate with each other and support their 
solutions. The opportunity for collaboration must be recognised as an 
important factor that reduced pressure to work alone and might be 
attributed as an important contribution to their success. Finally, it should be 
noted that students demonstrated their valid reasoning in a relatively short 
period of time, suggesting that there is a largely untapped potential for 
successful problem solving. 

Implications for Further Study 
The students who participated in the after-school program generated 

mathematical justifications using both direct and indirect forms of 
reasoning. It is interesting to note that the task of finding a rod whose length 
is one half when the blue rod had length one, generated all four types of 
reasoning. This can be explained, at least in part, to the task design that 
prompted creative thinking to show that no such rod exists for the set of 
rods provided). The strand of tasks that were offered to students afforded 
opportunities for building different, and often equivalent, models, offering 
more than a single convincing argument. Thus, students could offer their 
own arguments and take ownership of a justification while listening to 
alternative approaches. Learning to listen to how others approach a problem 
from problems in a related strand could also explain the success of the 
students. These results support Yackel and Hanna’s (2003) claim that given a 
supportive environment, all students can and do make and refute claims 
and participate in inductive and deductive reasoning.  

The research setting made possible multiple opportunities for students 
to talk about and represent their ideas and to collaborate with each other. 
Corrections and input from others led to revisions that became increasingly 
more elegant over time. The context of an informal, after-school 
environment made possible a relaxed atmosphere for testing ideas and 
making them public. The reasonableness of arguments was the measure for 
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a student’s success. What is noteworthy in this study is that, in a relatively 
short period of time, a culture evolved where sense-making and reasoning 
were exhibited in the problem solving of the students.  

This study suggests that establishing certain conditions for collaborative 
problem solving, students can be successful. They include: (a) inviting 
students to represent their ideas, share them with others, and provide 
justifications for solutions; (b) providing strands of open-ended tasks that 
can be solved in more than one way; (c) making sufficient time available for 
all students; (d) inviting communication with others; (e) revisiting tasks and 
discussing previous and new ways of knowing (f) promoting listening to 
alternative ideas; (g) requiring students to explain and justify their 
reasoning; (h) having a variety of materials and tools so that students can 
select their personal representation; and, finally, (i) respecting individual 
contributions; and (j) ensuring a respectful, supportive environment where 
students and their ideas are welcome and valued. 
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