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Abstract  
The Content Knowledge for Teaching Mathematics instrument was developed by the Study for 
Instructional Improvement and Learning Mathematics for Teaching projects at the University 
of Michigan to measure elementary school and middle school in-service teachers’ 
mathematical knowledge for teaching to assist in the evaluation of professional development 
programs for mathematics teachers. This instrument is currently in widespread use among 
colleges and universities for the purpose of evaluating mathematics education programs for 
prospective elementary and middle school teachers. Since this is an “off-label use of this 
instrument, this article establishes the reliability of the instrument among this new population 
of pre-service teachers.  

Introduction 
One key component of improving the mathematical education of students is to improve the 

knowledge of their teachers. This knowledge for teaching is complex and includes knowledge 
about the subject, the students, the curriculum, classroom management, and so forth. In his 
Presidential Address at the 1985 annual meeting of the American Educational Research 
Association, Lee Shulman laid out a construct regarding this knowledge needed for teaching 
(1986). Shulman divided the construct of knowledge for teaching into three major components: 
“(a) subject matter content knowledge, (b) pedagogical content knowledge, and (c) curricular 
knowledge” (Shulman, 1986, p. 9).  

In the realm of elementary mathematics, this subject matter content knowledge would 
coincide with what Liping Ma describes as a “profound understanding of fundamental 
mathematics” (Ma, 1999b). It is “going beyond knowledge of the facts or concepts” and 
“understanding the structures” of mathematics (Shulman, 1986, p. 9). In particular, “the teacher 
need not only understand that something is so; the teacher must further understand why it is so, 
on what grounds its warrant can be asserted, and under what circumstances our belief in its 
justification can be weakened or even denied” (Shulman, 1986, p. 9).  

The construct of subject matter content knowledge for teaching elementary mathematics may 
be further divided into common content knowledge and specialized content knowledge (Hill, 
Schilling, & Ball, 2004; Hill, Dean, & Goffney, 2005; Hill, Dean, & Goffney, 2007). Common 
content knowledge is “knowledge that is common to many disciplines and the public at large,” 
while specialized content knowledge is “knowledge specific to the work of teaching” (Hill et al, 
2007, p. 82).  
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The Content Knowledge for Teaching Mathematics Instrument 
Purpose and History: There are currently many programs in the United States focusing on 

improving the content knowledge for teaching of mathematics of elementary school teachers. 
The National Science Foundation’s Math and Science Partnership program or Department of 
Education Math and Science Partnership programs sponsor the majority of these programs. With 
the funds for these programs comes a requirement for evaluation of the programs.  

Because of this demand for instruments to measure the growth of teachers’ mathematical 
knowledge for teaching over the course of these professional development programs, the 
National Science Foundation’s Math and Science Partnership program has funded several 
programs to create such instruments. The Learning Mathematics for Teaching project at The 
University of Michigan is one such project and they have developed a series of instruments 
called the Content Knowledge for Teaching Mathematics (CKT-M) instruments.  

Since the CKT-M arose in response to a need of large professional development programs, 
the development group of the CKT-M instrument determined that the instrument must satisfy 
certain requirements. These included the need to measure large numbers of participants without 
taking a large amount of time or money; the reliability of the instrument should be such that it 
could accurately measure the performance of groups, but not individuals; and the instrument 
must contain linked forms to use as pretests and posttests (Hill & Ball, 2004; Hill et al, 2004; 
Blunk, Hill, & Phelps, 2005; Hill, 2007a; Hill, 2007b; Hill, 2007c).  

In addition to professional development programs, many pre-service teacher programs are 
also using the CKT-M instrument. Many of these programs have gone through major revisions in 
the past few years, partially as a result of No Child Left Behind legislation, which increased the 
number of hours of undergraduate mathematics courses required of elementary teachers. These 
changes also developed from a report of the Conference Board of the Mathematical Sciences 
with recommendations about what mathematical courses and topics should be included in 
undergraduate programs designed for future teachers (2001).  

Since the reliability of the CKT-M instrument was established using experienced in-service 
teachers enrolled in professional development programs (Hill & Ball, 2004; Hill et al, 2004), 
these reliability information for these instruments is needed for this new distinct demographic or 
pre-service teachers. This article will explore the reliability of a single published form including 
each of the three sub-scales corresponding to the content areas of numbers and operations; 
geometry; and patterns, functions, and algebra.  

 
Methodology 

Data Collection and Sample: Over a period of four academic semesters, 424 pre-service 
teachers enrolled in mathematics courses for elementary teachers at a large university in the 
southeastern United States served as study subjects. The students enrolled in these courses had 
already completed a traditional mathematics course, usually college algebra, but had not yet 
completed many courses in education and had limited exposure to the elementary classroom. 
Since these mathematics courses are prerequisites for many of the education courses involved in 
the elementary education major, nearly all of the participants were in their freshman or 
sophomore year at the university.  

The participants completed the survey instrument during a regularly scheduled class time 
within the first three weeks of classes during four subsequent semesters. They received an 
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adequate amount of time so that all participants were able to complete the instrument within the 
class period.  

The participants were 97% female and ranged in age from 19-35 with over 95% being under 
the age of 22. Additionally, 93% described themselves as Caucasian/White, with 5% African 
American/Black, and the remaining 2% in other categories.  

Instrument: The Content Knowledge for Teaching Mathematics (CKTM) instrument consists 
of multiple-choice questions designed to gain understanding of an individual’s knowledge of 
mathematical content in the three areas of number and operations; geometry; and patterns, 
functions, and algebra. To have a better idea of the type of items included in these instruments, 
an example of an item, chosen from the released items, in the area of number and operation is in 
the appendices. The actual items cannot be shared due to the use agreement for the instrument.  

To compare the reliability of the CKT-M instrument between pre-service and in-service 
teachers, the analysis used a pre-existing form that contained approximately equal number of 
items from the three content areas of number and operation; geometry; and patterns, functions, 
and algebra. The choice of the 2004(B) form was because it has undergone several revisions and 
has a reported three distinct factors corresponding to three major content areas from pre-service 
mathematics courses, number and operation; geometry; and patterns, functions, and algebra 
(Hill, Schilling, & Ball, 2004; Hill, Dean, & Goffney, 2007; Schilling, 2007). The only change 
from the standardized form is the removal of one item due to a typographical error in some of the 
copies.  

Form Reliability Analyses: Following the structure of the original CKTM form, the items 
were divided into three distinct sub-scales based upon the mathematical subjects of number and 
operation; geometry; and patterns, functions, and algebra. Each of the sub-scales was then 
analyzed using a two-parameter item response theory model in MULTILOG (Thissen, 2003) to 
correspond with the previous analysis of the form using in-service teachers. The analysis 
included determining how well the item response theory model fit the observed data followed by 
comparisons between the models generated using pre-service and in-service teachers of the item 
parameters, the instrument’s information and standard error curves, and the marginal reliability 
for each of the three sub-scales.  

The two-parameter item response theory model generated an item difficulty parameter and an 
item discrimination parameter for each of the items in the three sub-scales. The two parameters 
for each item generated by the item response theory model are the core of the model and 
generate all other results from the model including the item characteristic, item information, 
instrument information, and standard error curves.  

Goodness of Fit: In order to verify that the two-parameter model is appropriate for this 
instrument, with this population, each of the three sub-scales underwent a goodness of fit 
analysis. This involved a comparison of the model’s estimated ability of the subjects with their 
measured score using a graphical analysis in addition to a correlation.  

In addition to testing the ability of the model to estimate an individual’s ability level, it is 
also necessary to verify the ability of the model to estimate participant performance on each 
item. The item difficulty and discrimination parameters for each item generate an item 
characteristic curve which estimates how likely individuals at various ability levels are to answer 
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the item correctly. This item characteristic curve for the i-th item is a logarithmic curve given by 
the equation 

 
where θ is a participant’s estimated ability level,  is the discrimination parameter, and the 
difficulty parameter of the i-th item.  

For each item, an Average Absolute Standardized Residual determined if the item 
characteristic curve for that item matched the observed percent correct for the subjects at each 
estimated ability level (Hambleton, 1991). This Average Absolute Standardized Residual was 
then compared to the item’s ability and discrimination parameters to determine which types of 
items best fit the observed data.  

Item Parameters: The item difficulty parameter is the ability level at which half of the 
subjects answer the question correctly. Subjects whose ability level is below this difficulty 
parameter are likely to answer the question incorrectly while those whose ability level is above 
the difficulty parameter are likely to answer the question correctly. Therefore, the item answer 
difficulty parameters should vary between around two standard deviations above and below the 
mean for items appropriate for the sampled population. While the BILOG software (Mislevy & 
Bock, 1997) used in the analysis of the data collected from in-service teachers restricts the 
difficulty parameters to this interval, the MULTILOG software (Thissen, 2003)used in the pre-
service analysis does not have such restrictions.  

Since the standard deviation for the difficulty parameters generated with pre-service teacher 
data was as high as 5.24, an independent-measures t-test is unable to measure the difference 
between the parameters generated by the in-service and pre-service teachers. Instead, each item 
is treated as an individual for a related-samples t-test. These parameters were compared for all 
three sub-scales and the full scale.  

The item difficulty parameters are likely different since the pre-service teachers’ 
mathematical knowledge for teaching is similar to, but not as strong as that of the in-service 
teachers. Therefore, a one-tailed repeated-measures t test was used to measure the significance of 
this difference.  

The item discrimination parameter describes how well an item differentiates subjects at that 
item’s difficulty level. Mathematically, this is the slope of the curve at the ability level equal to 
the difficulty parameter. Theoretically, the item discrimination parameters should be similar 
between the pre-service and in-service models, and so a two-tailed repeated-measures t test was 
used to determine significance.  

Instrument Information and Standard Error Curves: For each item, the difficulty and 
discrimination parameters generate an item information curve from the item characteristic curve 

)(θiP , given by the formula  
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These item information curves are added together to create the instrument information curve  

 
which communicates how much information the instrument provides at various ability levels of 
the subjects.  

The standard error curve is the “standard deviation of the asymptotically normal distribution 
of the maximum likelihood estimate of ability for a given true value of ability” (Hambleton, 
1991, p. 95). These two curves are related in that the instrument information curve is the 
reciprocal of the square of the standard error curve.  

For each of the three sub-scales and the full scale, the instrument information and standard 
error curves of the model generated using pre-service teacher data was compared to the curves 
generated using the in-service teacher data. The curves for each of the sub-scales and the full 
scale were graphed on the same axes to allow for easier comparison even though the ability 
levels used on the independent axis are different for the two models.  

Marginal Reliability: Even though one of the benefits of item response theory is the ability to 
measure an instrument’s reliability for subjects at various ability levels, it is often desired to have 
a single index of reliability for the entire instrument. Along these lines, one defines a marginal 
measurement error as  

 
where  is the standard error function derived from the instrument information curve and 

 is the ability distribution of the sample population. 
The marginal reliability (Green, 1984; Thissen, 2001) of the instrument is then defined as 

 
The marginal reliability of each of the three sub-scales and the full scale were computed using 
the pre-service teacher data. These reliabilities were then compared to those generated using the 
in-service teacher data (Blunk, Hill, & Phelps, 2005; Hill, 2007a; Hill, 2007b).  
 

Results 
Goodness of Fit: The first method used to verify the goodness of fit for the 2-parameter item 

response model is to compare the model’s estimates of ability to the individual’s actual score. 
For the entire CKT-M scale and the three sub-scales (Number and Operation; Geometry; 
Patterns, Functions, and Algebra), one can see from Figure 1, there is a perfect fit between the 
data. This is verified by the correlations between estimated ability and true score being 0.9989 
(Full Scale), 0.9984 (Number and Operations), 0.9978 (Geometry), and 0.9978 (Patterns, 
Functions, and Algebra).  

To verify the goodness of fit of the model for the items, the Average Absolute Standardized 
Residual (AASR) was computed for each item using the item parameters generated using the 
Full Scale. For the AASR to be meaningful, only ability ranges which include a significant 
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number of participants is included. Using step sizes of 0.2 in the ability estimates, only the 
ability range of -0.8 to 1.2 had over 10 participants and was included in the analysis.  

 

 

 

 
Figure 1: Graphs of Abilities versus True Score for the Full Scale and Three Sub-scales 

After removing an outlier with an AASR of 3.73 and difficulty parameter of -541 (almost all 
subjects answered the item correctly), the AASR’s of the items had a mean of 1.20 and standard 
deviation of 0.34, with a range of 0.63 to 2.31. The correlation of the AASR with the difficulty 
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parameter was 0.02 for items whose difficulty is within the range of -2.0 to 2.0 and 0.79 for 
items outside this range. This implies that the items whose difficulty parameter lies outside the 
range of participants’ ability levels do not fit the model well. Similarly, the correlation between 
the discrimination parameter and the AASR of these items was 0.46 with higher discriminating 
items not performing as well as lower discriminating items (See Figure 2).  

 

 
Figure 2: Comparison of the Discrimination Parameter and Average Absolute Standardized Residual of 

CKT-M Items 

Since the 2-parameter item response theory model fits the measured data for the participant 
ability levels and the item parameters, this model is appropriate for evaluating the usefulness of 
this instrument with the population of pre-service teachers.  

Item Parameters: Since the discrimination parameter is the slope of the item characteristic 
curve and describes how well an item differentiates between individuals at the item’s difficulty 
level, this parameter should be independent of a population’s mathematical knowledge level. As 
suspected, there is no significant difference between the discrimination parameters generated 
using in-service and pre-service teachers. The Number and Operation sub-scale (M =0.06, SD 
=0.34), Geometry sub-scale (M = −0.04, SD =0.44), Patterns, Functions, and Algebra sub-scale 
(M = −0.09, SD =0.46), and the Full scale (M =0.03, SD =0.41) all fell within the range on the 
two-tailed t-test for the appropriate degrees of freedom to accept the null-hypothesis that there is 
no significant difference.  

Unlike the discrimination parameter, the difficulty parameter, which measures the point on 
the ability level where half of the population answers the item correctly, is expected to vary 
according to the population’s overall ability level. For the Number and Operation sub-scale, the 
difficulty parameters decreased (M =1.29, SD =4.68) between the model using pre-service 
teachers and the one using in-service teachers. This reduction was statistically significant, t(23) = 
−1.35, p< 0.05, one-tailed. Similarly, the Geometry difficulty parameters decreased (M =0.95, 
SD =2.89) a statistically significant amount, t(22) = −1.55, p< 0.05, one-tailed. The Patterns, 
Functions, and Algebra difficulty parameters decreased at an even higher rate (M =2.69, SD 
=6.16) which was statistically significant, t(17) = −1.85, p< 0.05, one-tailed. When looking at the 
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full scale, this decrease of the difficulty parameters (M = −1.56, SD =4.62) was also statistically 
significant, t(64) = −2.72, p< 0.05, one-tailed.  

The decrease in the difficulty parameters fits the hypothesis that the in-service teachers have 
a significantly higher level of mathematical knowledge for teaching than pre-service teachers.  

Instrument Information and Standard Error Curves: The Number and Operation sub-scale 
exhibited the largest difference between the models using pre-service and in-service teacher data 
(See Figure 3). For the majority of participants (within one standard deviation of the mean), the 
instrument provided significantly less information when used with pre-service teachers than with 
in-service teachers.  

 
Figure 3: Instrument Information Curves 

Furthermore, the standard error for the instrument was always above 0.80 when used with 
pre-service teachers, while in-service teachers, whose ability ranges between two standard 
deviations below and one standard deviation above the mean as computed by the model, had a 
standard error of less than 0.75. ( See Figure 4.) This large difference is likely due to the Number 
and Operation sub-scale measuring the mathematical content most common in the elementary 
classroom and so the in-service teachers are more likely to have recently worked with the 
information contained in this instrument.  

Since the items on the Geometry sub-scale are focused on subject matter dealt with in the 
latter elementary grades and middle school, the graphs from this sub-scale show that the 
instrument likely performed better for pre-service teachers than for in-service teachers since they 
had seen the material more recently. This phenomenon also occurred with the Patterns, 
Functions, and Algebra sub-scale to an extent. However, since this sub-scale included questions 
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regarding exponential growth that almost none of the pre-service teachers answered correctly, 
the instrument information curve for the pre-service teacher model was lower.  

 
Figure 4: Standard Error Curves 

 
When all three sub-scales are combined into the full scale, both the instrument information 

curve and the standard error curves for the two models are nearly identical. Furthermore, from 
these graphs (Figure 3 and Figure 4), one can conclude that the full scale instrument is very 
reliable with the standard error below 0.5 for nearly all pre-service and in-service teachers.  

Marginal Reliability: As with traditional reliability, the marginal reliability is a coefficient 
between 0 and 1 that measures the proportion of the instrument score is attributed to the actual 
ability level of the participant rather than noise. For each of the three sub-scales, the marginal 
reliability is given in Table 1. Since this instrument is designed to differentiate between groups, 
often as a pre and post test, the reliability indices should be in the range of 0.75 to 0.85 
(DeVellis, 1991, p. 85-86). Therefore, the Geometry sub-scale is the only sub-scale near 
appropriate reliability to use for pre-service teachers.  

 
Table 1:  Marginal Reliability for Pre-service and In-service Models 

Sub-scale Pre-service Model In-service Model 
Number and Operations 0.682 0.80 
Geometry 0.717 0.861 
Patterns, Functions, and Algebra 0.675 0.757 
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If one combines the three sub-scales to form the full scale, the reliability of the instrument for 
pre-service teachers becomes 0.8545, which is on the upper end of reliability for use at the group 
level.  

The marginal reliability in each situation above was computed under the assumption that the 
sub-scales are composed of independent items within the 2-parameter item response theory 
model. In reality, these sub-scales are composed of several testlets which do not have 
independence. Therefore, the marginal reliability for the three sub-scales and the full scale are 
likely significantly lower (Sireci, 1991).  
 

Discussion 
Changing the population from in-service teachers to pre-service teachers had a large effect on 

the item parameters and reliability of the CKT-M form used. The main consequence of this result 
is researchers should not use the reliability information created using data from in-service 
teachers when using the CKT-M instrument with pre-service teachers. Researchers should 
instead make sure that they collect data from enough subjects to run a thorough item response 
theory analysis on their forms and use these results in reporting their results and should make 
their own forms specifically for the population of pre-service teachers.  

Since the completion of an item response theory analysis is not always possible for every 
project, there is a need to create specific forms with reliability data generated using pre-service 
teachers. As evidenced from the results of this study, this form for pre-service teachers may 
consist of currently developed items from the Learning Mathematics for Teaching item pool, but 
would not be a previously compiled form. Much work still needs to be completed to determine 
which items are most appropriate for pre-service teachers and how many items might be needed 
to have adequate reliability when used with pre-service teachers.  
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Appendix 1: Sample Released Item from CKT-M 
Ms. Harris was working with her class on divisibility rules. She told her class that a number 
is divisible by 4 if and only if the last two digits of the number are divisible by 4. One of her 
students asked her why the rule for 4 worked. She asked the other students if they could 
come up with a reason, and several possible reasons were proposed. Which of the following 
statements comes closest to explaining the reason for the divisibility rule for 4? (Mark ONE 
answer.)  

a) Four is an even number, and odd numbers are not divisible by even numbers.  

b) The number 100 is divisible by 4 (and also 1000, 10,000, etc.).  

c) Every other even number is divisible by 4, for example, 24 and 28 but not 26.  

d) It only works when the sum of the last two digits is an even number.  
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