

58 Volume 35(1) May 2009 Kelley et al.

“Extreme Programming” in a Bioinformatics Class

Scott Kelley, Christianna Alger*, Douglas Deutschman

San Diego State University,5500 Campanile Dr. Mail Code 1153

 San Diego, CA 92182

Email: calger@mail.sdsu.edu

*Corresponding author

Abstract: The importance of Bioinformatics tools and methodology in modern biological research underscores the

need for robust and effective courses at the college level. This paper describes such a course designed on the

principles of cooperative learning based on a computer software industry production model called ―Extreme

Programming‖ (EP). The classroom version of EP included: working in pairs, switching roles between labs, partner

interdependence and individual accountability. New pairings were created at random each week and at the

completion of each lab, students (n=18) indicated their satisfaction and frustration levels with working with partners,

the materials, and the technology. We used a Repeated Measures-ANOVA (RM-ANOVA) statistical design to

provide statistical power with a modest number of subjects. Students consistently rated working with a pair highest

in terms of both ease and satisfaction, regardless of prior programming and technology experience. We found no

differences in reported ease or satisfaction between undergraduate and graduate students, or between students with

prior experience with technology. Surprisingly, we found that students rated the more difficult computer

programming part of the course higher than the web-based exercises. The Extreme Programming cooperative model

appears to be very appropriate for Bioinformatics classes, and can be easily implemented in computational labs to

enhance student satisfaction and potentially maximize the use of computer workstations.

Keywords: bioinformatics, Python, analysis of variance (ANOVA)

Introduction

 Bioinformatics has become an integral facet of

modern biological research. Academics and

biotechnology companies rely heavily on a vast

assortment of bioinformatics tools to analyze a virtual

flood of biological data, from genome sequence to x-

ray crystal structures, being dumped into computer

databases (Kaminski, 2000). Bioinformatics tools are

used to perform DNA and protein sequence searching

(Altschul et al., 1997), sequence alignment (Chenna et

al., 2003), molecular structure prediction (Akmaev et

al., 1999; Chivian et al., 2005), evolutionary

relationship analysis (Ronquist and Huelsenbeck,

2003), gene expression (Slonim, 2002), and many other

applications to generate or test hypotheses. The recent

development of simple, yet powerful, programming

languages (e.g., Perl and Python) has also opened the

door for biologists with little formal computer science

education to develop functional bioinformatics

software (Gentleman et al., 2004). Biotechnology

companies have invested heavily in bioinformatics

research, and scientists trained in bioinformatics

software tools and/or programming are often hot

commodities in the biotechnology industry.

 The importance of bioinformatics tools and

methodology in modern biological research

underscores the need for robust and effective courses in

college level bioinformatics. In our experience,

however, the typical biology student has limited

exposure to computational biology and little or no

programming background. Indeed, we often find that

both undergraduate and graduate biology students

express some distaste for computer work. Given the

increasing emphasis placed on bioinformatics and

technology in biological research, it is therefore

important to provide an educational experience that

maximizes learning and fosters student motivation.

 In computer labs at the college level, students

typically work on their own computers to learn

software or write programming code. This is true of all

the biology computer lab courses (e.g., bio-statistics,

conservation ecology, and population genetics) at San

Diego State University where the study took place.

However, numerous studies of cooperative learning

have clearly shown the advantages of working in pairs

or groups in terms of both learning outcomes and

interest levels for science and mathematics courses.

Slavin (1996) described cooperative learning as ‗one of

the greatest success stories in the history of educational

research‘ (p. 1) because so much research has tied

cooperative learning to achievement gains. Slavin‘s

review of 99 studies on cooperative learning and

achievement in K-12 school environments found that

 Extreme Programming Bioscene 59

 78% of the cooperative learning groups outperformed

the control groups in terms of student achievement. In

their meta-analysis of studies on cooperative learning

in science, mathematics, engineering and technology

(SMET) courses at the college level, Springer, Stanne,

and Donovan (1999) found significant positive effects

on achievement, persistence and attitude in students

engaged in small learning groups compared to students

who were not. They estimated that the effect of small

group learning on achievement would increase a

student‘s grade on a standardized (norm referenced)

test from the 50
th

 to the 70
th

 percentile and the effect of

group work on increased student persistence would

reduce attrition from SMET courses and programs by

22%.

 Given the clear potential benefits of

cooperative learning, our aim was to develop and

evaluate a novel cooperative learning approach for

bioinformatics at the college level. In this study, we

focused on the effectiveness of cooperative learning on

student motivation, per se, rather than on learning.

Motivation appeared to be a particular concern with

biology students not naturally inclined towards

computer work, and the students scored highly on all

the course exams this semester and in previous years,

indicating that they had mastered basic Bioinformatics

concepts. We based our cooperative learning approach

on a new software development model used in the

computer industry called ‗Extreme Programming‘

(EP). The EP model, described as a ‗deliberate and

disciplined approach to software development‘ (Wells,

2001), is characterized by a set of simple rules and

practices associated with all phases of development

from planning to execution. What makes this model

different from others is that programmers work in

pairs, with several pairs working to find solutions to

the same project/problem or pieces of the problem.

The process stresses communication and teamwork and

appears ideally suited for a hands-on bioinformatics lab

course, in which students could be paired at a single

computer.

EP claims several key advantages to solo programming

approaches: 1) increased problem-solving capacity; 2)

higher likelihood and greater rapidity of error-catching;

and 3) more engaging and productive work experience.

These touted advantages in workplace productivity

appear remarkably similar to the educational benefits

observed in cooperative group learning approaches.

Many instructors assume that when students

are working in groups or with partners that the students

are engaging in cooperative group work. In fact, to reap

the benefits of group work, attention to the structure of

the group and the type of task required is

critical. According to Johnson and Johnson (1994),

cooperative learning has four basic elements: 1) group

members work toward a common goal, resulting in

interdependence; 2) students interact to solve

problems; 3) a component of individual accountability

is built in to the lesson or course to assure that all

students master the content being taught; and 4)

interpersonal and small group skills are

developed. Cohen (1994) added two more necessary

elements. First, all individuals must have opportunities

to hold high status academic positions, such as

facilitator. And secondly, for maximum learning to

occur, the task assigned to groups should be open-

ended, meaning that a variety of solutions are possible,

and difficult enough so that students experience a

‗healthy level of uncertainty‘.

 The structure of the bioinformatics class run

by one of the authors (Kelley) was designed to

encompass almost all of the requisite elements of

effective group work. Interdependence was established

by having both members of each pair earn the same

grade for each lab. The success of one student was

determined by the success of the partnership. The

students were provided considerable opportunity to talk

face-to-face to solve problems. In addition to group

grades, each student took quizzes and wrote papers

independently, creating individual accountability.

Each pair worked together on two labs a week and they

shared a computer to accomplish each task. One

student worked at the computer while the other

observed as they problem-solved. The students were

required to switch roles for each lab. In the first half of

the course, students learned how to use a series of

complex, but highly useful, bioinformatics tools for

analyzing biological data. In the second half of the

course, the students were taught the fundamentals of

computer science in the Python programming language

and applied this language to the analysis of sequence

data. These first labs were more ‗cut and paste‘ as

opposed to the labs in the second half of the semester,

which were open-ended, and by the students‘ own

admission, more difficult.

After designing the course based on best

teaching practices, we developed a survey given after

every lab to answer to the following questions:

1.) What was the satisfaction of working

with a partner relative to lecture and

technology?

2.) How effective was the paired learning

approach under increasingly high levels

of uncertainty?

3.) How did past experience with technology

and student grade level (undergraduate or

graduate) affect the learning experience?

4.) Did a decrease in comfort level with the

material or the technology decrease

satisfaction of working with a partner?

Due to the limited number of student

respondents, we used a statistical design known as a

60 Volume 35(1) May 2009 Kelley et al.

 Repeated Measures ANOVA (RM-ANOVA;

see Materials and Methods), a methods routinely used

with studies including small sample sizes, such as

clinical trials. Statistical analysis of survey responses

answered all of the above questions in a

straightforward manner and helped us determine the

effectiveness of the EP cooperative learning model for

Bioinformatics.

Materials and Methods

Data Collection and Participants

Data were collected using lab evaluation

surveys (Table 1) during S. Kelley‘s bioinformatics

course in the spring of 2005 at San Diego State

University. The course participants included 8 female

students and 10 male students (45% female). Of these,

11 out of 18 students (>60%) had non-European

ancestry, and 7 were undergrads, while the rest were

Master‘s students. The course was taught in a

―lecture/lab‖ format. Prior to the lab, the teacher

(Kelley) would teach a lecture on the algorithms or

concepts underlying the particular exercise. For

example, in the non-Python section the students might

be taught a DNA sequence comparison algorithm and

then use the algorithm to compare two novel sequences

on pen-and-paper. In the Python section, the students

might be taught a basic programming concept, such as

the logic behind an ―if/else‖ statement. Following this

short lecture and exercise (usually lasting about 30-45

minutes) the students would then pair up at a computer

and complete an exercise written by the instructor

related to the lecture material. After the lecture on

sequence comparison, the students would complete a

lab exercise using web-based software implementing

the algorithm for comparing two sequences, and after

the ―if/else‖ lecture, the students would write a Python

program that used ―if/else‖ statement.

Table 1. Sample survey completed by students after each lab.

Name or Red ID ____________ Partner Name ___________Lab # ____ Date _____

Place an X next to your student status: Undergraduate ___ Graduate ___ student.

I. On a scale of 1 (extremely frustrating) to 10 (not frustrating at all) rate your frustration level with

elements of the lab. Please write the rating in the space provided.

Extremely Frustrating Not Frustrating at all

 1 2 3 4 5 6 7 8 9 10

_____ material being studied _____ working with a partner _____ technology

II. On a scale of 1 (extremely dissatisfying) to 10 (very satisfying) rate your satisfaction with the lab

experience. Please write the rating in the space provided.

Extremely Dissatisfying Very Satisfying

 1 2 3 4 5 6 7 8 9 10

_____ material being studied _____ working with a partner _____ technology

III. Place an X next to the statement that best describes your familiarity with the software

_____ I am very familiar with the software used for this lab.

_____ I am not familiar with the software, but have successfully used similar software.

_____ I am not familiar with the software.

IV. Is there anything else you would like to communicate about your lab experience?

After each lab students were asked to

complete a short survey indicating their level of ease

and their level of satisfaction with the study material,

the computer technology, and their partner. The

―material‖ part referred to the written exercise the

students worked on with the partner at the computer,

while the ―computer technology‖ referred to the web-

based software or the Python programming

environment. An example of the survey is shown in

Table 1. The surveys were placed in an envelope which

was stored unopened until the end of the semester after

all the grades for the course had been assigned.

Students were assured that no one would look at the

survey results until after assignment of final grades.

Statistical Methods

We used one-way ANOVAs to test for

significant difference in over all mean scores among

labs, between undergraduate and graduate students, and

 Extreme Programming Bioscene 61

 between students with previous experience or

no previous experience in overall mean scores. Survey

scores were also analyzed using a 3-way RM-ANOVA.

RM-ANOVA methods provide a powerful means of

providing statistical power with a modest number of

subjects. Many published RM-ANOVA designs use

modest numbers of subjects. Case studies provided by

Quinn and Keogh (2002) include samples sizes

comparable to the present study: n=12, 20 and 24

subjects. According to Quinn and Keough, ―The main

aim of these [RM] designs is to reduce the unexplained

variation (MS residual) …They offer more powerful

tests of the null hypothesis of interest, with no increase

in the overall resources needed for the experiment

(p.262).‖ According to Munro (2004), ―Each subject

[serves] as his or her own control, and the within or

error variance [is] decreased. This [results] in a more

powerful test and [decreases] the number of subjects

needed for the study (Page 214).‖ The proven ability of

Repeated Measure approaches to provide statistical

power in studies with modest samples sizes similar to

our own, gave us confidence in interpreting our

statistical results.

Lab exercises were highly variable in content

and were treated as the repeated measures. Data

normality and homogeneity of variances were tested

and confirmed using graphical methods. We used an

Expectation Maximization (EM) algorithm, based on

the work of Little and Rubin (1987), to impute missing

values in student survey responses. Missing values

comprised approximately 15% of the dataset. The EM

method used a maximum likelihood approach to

estimate the expected values based on the observed

data (i.e., student responses for other labs). The 3-

factors in the RM-ANOVA included: (1) Lab Type

(Non-Python vs. Python); (2) Education Component

(Materials vs. Pairs vs. Technology); and (3)

Questionnaire (Ease vs. Satisfaction). Paired T-Tests,

in which survey data for each student was kept as a

separate response variable, were used to compare mean

differences in survey responses overall scores for

Material, Partner and Technology. These tests were

divided by lab type (Python and Non-Python) and

question type (Ease and Satisfaction). The Paired T-

Test approach is especially useful for situations with

high among-subject variability, such as patients in

clinical drug trials.

Results

 This study made 96 observations on each of

the 18 individuals (6 measures for each of 16 labs).

This means that a total of 1728 observations were

collected, a sizeable number by any measure and an

indication of how Repeated Measure designs allow for

strong conclusions with modest subject numbers. The

analysis used the average of 8 labs for each metric.

Thus we have 16 (size n=8) averages in the RM

analysis (288 averages). The averages are more

normally distributed than the raw value (central limit

theorem) providing better fit to the assumption of

normality. One-way ANOVAs found significant

differences in overall scores among labs, but no

significant differences between undergraduate and

graduate students or any effect of previous experience

on survey responses. For main effects, we found highly

significant differences in the survey responses between

Python and Non-Python labs (Table 2: F1,17=14.348;

P=0.001) and among the different types of educational

components (Table 2: F2,34=15.906; P<0.001)

Materials, Pairs and Technology). We did not find

significant differences between the survey response in

terms of question type (Ease and Satisfaction). There

were also significant 2-way interactions between lab

type and educational component (Table 2:

F2,34=11.728; P<0.001), as well as between educational

component and question type (Table 2: F1,17=14.348;

P=0.001), but not between lab type and questions type.

No significant 3-way interactions were detected.

62 Volume 35(1) May 2009 Kelley et al.

Table 2. Three-way repeated-measures ANOVA on student survey scores.

Repeated Measures ANOVA

Source Sums-Sq df Mean-Sq F P H-F
†
 P

Main Effects

Lab Type (Lab)
1

10.893 1 10.893 14.348 0.001 .

Error 12.907 17 0.759

Educational Component (Comp)
2

31.812 2 15.906 15.284 < .001 < .001

Error 35.384 34 1.041

Questionnaire Type (Ques)
3

1.423 1 1.423 0.936 0.347 .

Error 25.846 17 1.520

2-way Interactions

Lab * Comp 5.819 2 2.910 11.728 < .001 0.001

Error 8.435 34 0.248

Lab * Ques 0.680 1 0.680 3.083 0.097 .

Error 3.751 17 0.221

Comp * Ques 6.973 2 3.486 3.518 0.041 0.041

Error 33.694 34 0.991

3-way Interaction

Lab * Comp * Ques 0.482 2 0.241 1.850 0.173 0.173

Error 4.427 34 0.130

1
Lab Type (Python, Non Python)

2
Educational Component (Material, Pairs, Technology)

3
Questionnaire (Satisfaction, Frustration)

†
Huynh-Feldt corrected P value

 Plots of 4 individual student responses

illustrated the tremendous student variability in survey

responses over the course of the semester (Figure 1).

Paired T-tests found significant differences in the mean

responses for Materials, Pairs and Technology in both

Python and Non-Python labs (Fig. 2, 3). In general, the

scores for Pairs were highest, followed by Technology

then Materials. However, Technology and Pairs scored

almost equally well in their Satisfaction scores for the

Python labs and students also found the Non-Python

technologies less satisfying than the lecture materials

for the Non-Python labs. Figure 2 shows a transition

graph for all 18 students, along with the mean scores

and standard errors, for one of the Paired T-tests (Non-

Python, Satisfaction survey scores), while figure 3

reports the mean responses for all the Paired T-tests

without individual student responses.

Figure 1. Graph showing the Satisfaction scores for

four representative students for all 16 labs. This subset

of students spans both the Grad/Undergrad and the

Level of Familiarity before the class. The chart

illustrates the considerable variability among students

and labs.

L ab N u m b er

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
a

ti
s

fa
c

ti
o

n
 w

it
h

 P
a

r
tn

e
r

0

5

10

G radua te U nde rg radua te

Less F am ilia r

M ore F am ilia r

 Extreme Programming Bioscene 63

Figure 2. Transition graph showing average

Satisfaction with NonPython Labs. Responses of all 18

students are represented by the thin lines, and the thick

line connects the mean and standard errors for the

groups, indicating how they differ among Materials,

Partner and Technology.

E d u c a tio n a l C o m p o n e n t

M a te ria l P a rtn e r T e ch n o lo g y

S
a

ti
s

fa
c

ti
o

n
 S

c
o

r
e

5

6

7

8

9

1 0

Discussion

The survey was a highly sensitive indicator of

student frustration and satisfaction with the course,

despite the apparent simplicity of the survey design.

Most of the students scored all aspects of each lab

above 50%. However, within this range there was a

considerable variability and strong differences among

both students and labs in terms of survey scores. Figure

1 illustrates the typical responses of four individual

students over the course of the semester. As expected,

there was highly significant lab-to-lab variability,

which reflected the wide diversity of exercises

presented to the students, particularly in the Non-

Python exercises.

Encouragingly, we found no differences in

responses between students with or without previous

experience with the technology (either the web tools or

programming experience) or between undergraduates

and graduate students. This finding mirrors personal

observations made by the instructor in the course.

Many of the bioinformatics novices were just as good

with the bioinformatics tools and at programming as

the ‗experts‘ and the undergraduates performed as well

on tests as did the graduate students.

The RM-ANOVA found highly significant

differences between student responses to the lecture

material, the technology and working with a partner

(Table 2). A closer look at the data using a paired T-

test identified the strongest trend in the study: students

consistently rated working with a partner highest in

terms of both Ease and Satisfaction, and in both Python

and Non-Python labs (Figure 3). Clearly, the aspect of

collaboration was highly valued and the EP cooperative

model appears to be very appropriate for

Bioinformatics classes. Although we did not directly

evaluate the impact of the EP model on student

learning, cooperative learning has a long track record

of boosting student achievement in SMET courses and

student satisfaction is also correlated with performance.

From an instructor perspective, there were two other

enormous advantages to using the EP model. First, the

students had someone to help troubleshoot problems,

reducing their reliance on the instructor to answer

questions. Second, EP effectively doubles the number

of students who can take the course, which is an

important concern given the extremely limited

computer resources on campus.

The RM-ANOVA analysis also uncovered

highly significant differences in student responses

between Python and Non-Python labs (Table 2). The

survey results appear to reflect the extremely different

character of the material taught in the two halves of the

course. Somewhat to our surprise, we found that these

biology students tended to favor the Python

programming section of the course over the Non-

Python section (Figure 3). Although many of the

students expressed trepidation about the programming

section prior to the start of the course, and many

expressed considerable frustration about programming

during lab exercises, overall they seemed to find

working the simpler ‗cut and paste‘ labs more

frustrating than the open-ended Python labs. This

would suggest that students want to engage in more

demanding work and that doing so with a partner

enhances the experience.

 The students appeared to be especially pleased

with the Python technology (Figure 3), a fact that

speaks well for the Python language as a learning tool

since many students had no prior programming

experience. The high overall survey scores appeared to

confirm the students‘ general interest in bioinformatics

and programming per se. This is especially important

in light of the fact that 45% of the class was female and

60% had non-European heritage. Indeed, many of the

students appeared to have considerable latent abilities

with programming (S. Kelley, pers. obs.) and

apparently just needed an opportunity and the right

environment to express their talents. We suggest that

the non-competitive EP cooperative learning model,

combined with easy syntax of the Python programming

language and an interesting application (Biology),

opens the door to computer education for students who

otherwise might never try such a class.

64 Volume 35(1) May 2009 Kelley et al.

Figure 3. Transition graph showing the average scores

with standard error bars for Materials, Pairs and

Technology. The scores are broken down by Ease and

Satisfaction, as well as by Python and Non-Python

labs.
F ru s tra tio n

M ateria ls P a ir T ech n o lo g y

A
v

e
r
a

g
e

 S
c

o
r
e

7

8

9

S atis fac tio n

M ateria ls P a ir T ech n o lo g y

7

8

9

P yth o n

N o n -P yth o n

Even though we have 30 years of research on

the positive effects of group-work (Slavin, 1995),

higher education has ‗yet to respond to calls for greater

opportunities for collaboration and cooperation in

SMET (science, mathematics, engineering and

technology) courses and programs‘ (National Science

Foundation, 1996). Professors continue to implement

teacher centered teaching styles that focus on

transmitting knowledge to passive learners. This

traditional lecture model of teaching does not engage

students or reflect what it is scientists will be expected

to do once they enter the workforce, whether it be on a

campus or out in the field (Arch, 1998; Springer et al.,

1999). By adapting the Extreme Programming model

to the bioinformatics class, we believe we have created

a student-centered class that required the learner to

engage with the material and his or her classmates. In

the process of learning the content, the students learned

the value of collaboration in problem-solving that will

be needed in the workplace.

Limitations of the study and directions for further

research

 The two greatest limitations of this study were

the lack of a control or comparison group. Given the

small number of students enrolled in the course, we

believed that dividing the class into experimental and

control groups would have yielded insufficient data and

would have deprived students of potential benefits of

cooperative learning. Also, there already exists a

plethora of research connecting achievement and

cooperative learning, so the first priority was to

establish a cooperative learning model that works well

in the context of a bioinformatics class (or college

computer classes in general). Controls are certainly the

best way to judge learning and achievement, per se, but

the focus of this study was on the effect of cooperative

learning strategies on student motivation in a computer

class. Thus, we plan to carry out a long term study on

this continuing course that uses ―fortuitous controls‖,

which would be times when someone‘s partner does

not show up for a lab and they are forced to work by

themselves. We are still working out the details of how

this might be accomplished. Additionally, qualitative

data such as student interviews and longitudinal follow

up with participants could yield greater understanding

of the long-term effects of the use of the Extreme

Programming model in Bioinformatics classes.

Acknowledgements

We thank the SDSU College of Sciences Computer

Support division for their help with the installation of

computer software. We also thank the Bioinformatics

students for their helpful participation with the surveys.

References

AKMAEV, V. R., KELLEY, S. T., AND STORMO, G. D.

1999. A Phylogentic Approach to RNA Structure

Prediction. Proc. Int. Conf. Intell. Syst. Mol. Biol., 7,

10-17.

ALTSCHUL, S. F., MADDEN, T. L., SCHAFFER, A. A.,

ZHANG, J., ZHANG, Z., MILLER, W., AND LIPMAN, D. J.

1997. Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs. Nucl.

Acids Res. 25, 3389-3402.

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF

SCIENCE .1989. Science for all Americans: Project

2061, New York: Oxford University Press.

ARCH, S. 1998. How to teach Science. Science, 279,

1869.

BLOSSER, P,E., 1992. Using cooperative learning in

science education, ERIC Clearinghouse for Science,

Mathematics, and Environmental Education,

http://www.stemworks.org/Bulletins/SEB92-1.html

(accessed on 13 April 2006).

CHENNA, R., SUGAWARA, H., KOIKE, T., LOPEZ, R.,

GIBSON, T. J., HIGGINS, D. G., AND THOMPSON, J. D.

2003. Multiple sequence alignment with the Clustal

series of programs. Nucl. Acids Res. 31, 3497-3500.

CHIVIAN, D., KIM, D. E., MALMSTROM, L.,

SCHONBRUN, J., ROHL, C. A., AND BAKER, D. 2005.

Prediction of CASP6 structures using automated

Robetta protocols. Proteins 61 Suppl 7, 157-166.

 Extreme Programming Bioscene 65

COHEN, E.G. 1994. Restructuring the classroon:

Conditions for productive small groups. Review of

Educational Research, 64, 1-35.

GENTLEMAN, R. C., CAREY, V. J., BATES, D. M.,

BOLSTAD, B., DETTLING, M., DUDOIT, S., ELLIS, B.,

GAUTIER, L., GE, Y., GENTRY, J., et al. 2004.

Bioconductor: open software development for

computational biology and bioinformatics. Genome

Biol. 5, R80.

JOHNSON, D.W., AND JOHNSON, R.T. 1994. Learning

Together and Alone:Cooperative, competitive, and

individualistic learning, (4th Ed.) Boston: Allyn &

Bacon.

KAMINSKI, N. 2000. Bioinformatics. A user's

perspective. Amer. J. Respir. Cell Mol. Biol. 23, 705-

711.

LITTLE, R. J. A., AND RUBIN, D. B. 1987.Statistical

analysis with missing data. New York: Wiley.

MUNRO, B., 2004. Statistical methods for healthcare

research. New York: Lippincott Williams & Wilins.

NATIONAL SCIENCE FOUNDATION 1996. Shaping the

Future: New expectations for undergraduate education

in science, mathematics, engineering, and technology.

Washington, DC: National Academy Press.

QUINN, G.P. AND KEOUGH. N.J., 2002. Experimental

design and data analysis for biologists. Cambridge:

Cambridge University Press.

RONQUIST, F., AND HUELSENBECK, J. P. 2003.

MrBayes 3: Bayesian phylogenetic inference under

mixed models. Bioinformatics 19, 1572-1574.

SEYMOUR, E. AND HEWITT, N.1997. Talking about

leaving: Why undergraduates leave the sciences.

Boulder, CO: Westview.

SLAVIN, R. 1995 Cooperative Learning: Theory,

research and practice (2nd ed.) Boston: Allyn & Bacon.

SLAVEN, R. 1996. Research for the future: Research on

cooperative learning and achievement: What we know,

what we need to know. Contemp. Educ. Psy., 73, 651-

653.

SPRINGER, L., STANNE, M.E., AND DONOVAN, S.S.

1998. Effects of small group learning in science,

mathematics, engineering, and technology: A meta-

analysis. Review of Educational Research, 69, 21-51.

SLONIM, D. K. 2002. From patterns to pathways: gene

expression data analysis comes of age. Nat. Genet. 32

Suppl, 502-508.

