
This simple law is based on the index law: 

2m × 2n = 2m+n.

In our example, 16 = 24 occurs 4 cm from the
left-hand end of the scale; 32 = 25 occurs 5 cm
from the end. The product, 

512 = 24 × 25 = 24+5 = 29

is 9 cm from the end. This number is located by
simply adding the 4 cm and 5 cm lengths
together. We have thus converted our multipli-
cation problem into an easier addition problem.

Of course one of the inadequacies of the slide
rule is its accuracy. It only ever gives approxi-
mate solutions.

The same calculation can be done from a
table. We say that the number 2m has logarithm
m, and write log2 (2m) = m. 

For example, log2 16 = 4. 
The subscript 2 shows that we are consid-

ering powers of 2; it is called the base of the
logarithm.
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The powers that be

These days, multiplying two numbers
together is a breeze. You just enter the two

numbers into your calculator, press a button,
and there is the answer! It never used to be this
easy. Generations of students struggled with
tables of logarithms, and thought it was a
miracle when the slide rule first appeared. I
remember in my university days, carrying a
slide rule on one’s belt was a badge of honour!

It is easy to make a simple slide rule.

1. Carefully copy two identical scales as
show below on two pieces of cardboard A
and B. The markings are spaced at 1 cm
intervals, and the numbers are just
powers of 2. You can continue the scales
to the right as far as you like. 

Now these pieces of card can be used to
multiply numbers together. For example,
to multiply 16 by 32, we place the cards
like this.  

We now read off 16 × 32 = 512. 
(Check this.) 
Use the cards to find 8 × 128, 32 × 64, 
64 × 16.

A 1 2 4 8 16 32 64 128 256 512

B 1 2 4 8 16 32 64 128 256 512

A 1 2 4 8 16 32 64 128 256 512

B 1 2 4 8 16 32 64 128 256 512

HOW TO

MULTIPLY
BY ADDING
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2. Below is a table of some powers of 2 and
their logarithms to base 2. Write out in
words the steps you would take to eval-
uate 16 × 32 using this table. 
Extend the table, and use it to find 
8 × 128, 32 × 64, 64 × 16.

Number Logarithm
2 1
4 2
8 3

16 4
32 5
64 6

128 7
256 8
512 9

Any positive number other than 1 can be
taken as the base of a system of logarithms.
Common logarithms have base 10.
Mathematically, the most useful base is the
number e. Although this may not seem to be at
all natural to you, logarithms to the base e are
called natural logarithms, sometimes written as
ln rather than loge.

Extensions

3. (a) Construct a slide rule using powers of 3.
Use it to evaluate 27 × 81, 9 × 243, 
81 × 279.

(b) Construct a simple table of logarithms to
base 3. What is log3 243? What is 
log3 2187? Use your table to evaluate the
products in (a).

4. (a) Why is 1 not suitable as a logarithmic
base?

(b) Can you suggest why common logarithms
have base 10? What number has common
logarithm 1? 2? 3?

5. Try to obtain a manufactured slide rule.
(a) See if you can multiply simple numbers

using the A and B scales. 
(b) On the A scale, measure the actual

distance between 
(i) the 1-mark and the 10-mark
(ii) the 10-mark and the 100-mark. 
What do you find? Why is this so?

6. Read the chapter ‘How to forget the multi-
plication table’ in the old book
Mathematician’s Delight by W. W. Sawyer.
You will find that there is a relation
between logs and posts!

Getting the picture

So far we have talked about powers (or expo-
nents, as they are called), but there has been no
sign of our mystery number e. Let’s remedy
that! As an introduction, we take the powers of
2, and plot them on a graph. Here are the
powers:

Here is how they appear on a graph. We see
that the powers increase very rapidly. In the
graph we have marked the points (1, 2), (2, 4),
(3, 8), (4, 16), (5, 32), as well as the point (0, 1)
corresponding to 20 = 1. If we draw a smooth
curve through these points, then it seems
reasonable that the ‘in between’ powers of 2
such as 23/2 and 27/8 will lie on this curve. The
curve has equation y = 2x (x ≥ 0).

7. (a) Reproduce this curve on a large piece of
squared paper.

(b) Using a different colour, plot the points 
(n, 3n) for n = 0, 1, 2, 3, … and join them
by a smooth curve.

(c) Use a third colour to draw a curve
through the points (n, 4n) for n = 0, 1, 2,
3, …

n 1 2 3 4 5 6 7 8

2n 2 4 8 16 32 64 128 256
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(d) Can you see that these curves are related
by a ‘horizontal stretching’? Remembering
that e ≈ 2.7, sketch in the approximate
position of y = ex for x ≥ 0.

All these curves are closely related. They are
called exponential curves because they map the
powers of numbers. Suppose we now reproduce
the above graph, but with a larger y-scale.

8. (a) Use the figure at right to complete the
following table.

(b) Construct a similar table for the points 
(n, 3n). Make an observation about your
results in each case.

This admittedly rather rough argument
suggests that for exponential curves, “slope is
proportional to height,” or

(slope at point P) = C (y-coordinate of P),
where C is constant for a given curve.

With a little calculus, it can be shown that
for points on the curve y = 2x, C ≈ 0.69; for
points on the curve y = 3x, C ≈ 1.1; and for
points on the curve y = ex, C ≈ 1 exactly. This
simple fact is what makes the number e special.
We have yet to explore some of the conse-
quences of this property.
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Point y-coordinate
of point Segment Slope of

segment

P0 1 P0 P1 1

P1 P1 P2

P2

P3

P4

G. H. Hardy was unorthodox, radical and
regarded by his peers as the ‘purest of pure
mathematicians’. The New Yorker described A
Mathematician’s Apology , first published in
1940, as ‘one of the most eloquent descriptions
in our language of the pleasure and power of
mathematical invention’. 

Hardy uses the word ‘apology’ in the sense of a
formal justification of mathematics, not as a
plea for forgiveness. He was feeling the
approach of old age and wanted to explain his
mathematical philosophy to the next generation
of mathematicians. On page 81 he wrote: 

The Greeks were the first mathematicians
who are still ‘real’ to us to-day. Oriental
mathematics may be an interesting curiosity,
but Greek mathematics is the real thing. The
Greeks first spoke a language which modern
mathematicians can understand: as Littlewood
said to me once, they are not clever
schoolboys or ‘scholarship candidates’, but
‘Fellows of another college’. So Greek
mathematics is ‘permanent’, more permanent
even than Greek literature. Archimedes will be
remembered when Aeschylus is forgotten,
because languages die and mathematical ideas
do not. ‘Immortality’ may be a silly word, but
probably a mathematician has the best chance
of whatever it may mean.


