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Padula (2005) described how mathematics teachers can channel the
passion of students interested in electronic music by teaching the math-

ematics that has been used to create it. She hypothesised that the study
and enjoyment of music may help the study of mathematics since both
mathematics and music are symbol systems and pattern (and its recogni-
tion) are important to both. 

Some excellent music has been composed on and for the computer by
composers Gyorgy Ligeti and Charles Wuorinen, (Quaglia, 2000), and Larry
Sitsky (Nisbet, 1991); however much of it would not engage the average
teenager. Apart from such serious works, there has been some good dance
‘techno’ music produced, but it did not, and still does not, receive the
support of the art-music establishment (Crotty, 2007). It has, however, been
enthusiastically received by many teenagers and young adults. ‘Techno’
computer-based music is enjoyed by many students and is known to most.
‘Techno’ is based on fractal geometry.

Fractal geometry

Mandelbrot’s (1983) formulation of fractal geometry meant that scientists
could measure not just triangles, rectangles and circles (Euclidean geom-
etry) but unusual shapes they had previously called: grainy, hydralike, in
between, pimply, pocky, ramified, seaweedy, strange, tangled, tortuous,
wiggly, wispy, wrinkled and the like. He noticed that the number of distinct
scales of length of natural patterns is for all practical purposes infinite. In
nature these patterns can be observed in the branches of a tree, coastlines,
snowflakes, mountain ranges and the florets of a cauliflower. Informally,
Mandelbrot (1998) declares fractal geometry to be the systematic study of
certain very irregular shapes in either mathematics or nature, wherein each
part is very much like a reduced size image of the whole. 
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Infinite perimeter in a finite space

Mandelbrot used the example of the coastline of Britain being an infinite
length, confined within a finite space (Farrell, 1998). In measurements of
coastlines, smaller units mean greater accuracy, but just as fractions can
always be infinitely smaller, so can our units of measurement. Formerly we
relied on calculus to help us to understand perimeter and area by creating
rectangles of smaller and smaller dimensions but this meant relying on
simple models. With fractal geometry we can more closely approximate
nature. When fractals are demonstrated in nature, they have what is called
statistical self-similarity. This means that the statistics of the pattern repeat
themselves on different levels.

The Mandelbrot set is based on the quadratic equation f(z) = z2 + c where
both z and c are complex numbers, pairs of real numbers (Sabine, 2004).
The employment of Mandelbrot’s actual equation Z ↔ z2 + c mapped to the
sound-making and colour-pixel elements of computers enabled composers
to use computers to create fractal music. When fractals are generated by a
computer they have self-similarity (Padula, 2005; Diaz-Jerez, 1999). 

Moon (1987) described fractal geometry more formally as a geometric
property of a set of points in an n-dimensional space having a quality of self-
similarity at different length scales and having a noninteger fractal
dimension less than n. ‘Fractal dimension’ means a quantitative property of
a set of points in an n dimensional space which measures the extent to
which the points fill a subspace as the number of points becomes very large.
Although the mathematics is simple, you need a computer to do the large
number of calculations.

Fractal music

Diaz-Jerez (1999) described how students can listen to and create modern
musical compositions on computers using Mandelbrot’s non-linear iterative
fractal equation Z ↔ z2 + c (the answer is fed back into the equation). The
first iteration of Mandelbrot’s equation produces a pair of coordinates. Then
on the second, third, fourth, etc. iterations the equation generates related
coordinates. If you process say, 1 000 000 iterations you will produce
1 000 000 pairs of very closely related coordinates that belong to a complex
pattern (Sabine, 2004), e.g., the Mandelbrot and Julia sets. These coordi-
nates, when mapped to frequency, duration and amplitude parameters on
a simple x–y graph are employed to create music. (Oliver (2002) described
how students can plot Julia orbits using an Excel spreadsheet.) 

Different mathematical topics can be used to generate fractal music.
‘Earthworm algebra’ is just one and is described by Diaz-Jerez (2000) in the
following manner:

Take any whole number A, a constant multiplier B and a number which will
be the maximum number of digits allowed C. Next, multiply A and B. Take the
result and multiply it again by B. Repeat this process until the number of
digits in the result get past C. Now sever the result by truncating it to its
rightmost C digits. Multiply again by B and sever again to C digits, and so
forth. It turns out that all earthworms (mathematically speaking) eventually
enter a cycle, an infinite loop of repeating values.
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The following example is given with 2 as the first number, 3 as the multi-
plier and 2 for the maximum number of digits:

A B C 
(maximum digits)

2 3 2 

6 18

18 54

54 62 (severed)

62 86 (severed)

86 58 (severed)

58 74 (severed)

74 22 (severed)

22 66

66 98 (severed)

98 94 (severed)

94 82 (severed)

82 46 (severed)

46 38 (severed)

38 14 (severed)

14 42

42 26 (severed)

26 78

78 34 (severed)

34 2 (severed)

2 6 

6 18

As shown above and Diaz-Jerez (2000) states, this particular combina-
tion makes a cycle of twenty different values. Some combinations generate
‘worms’ thousands of values long. The sequences seem to be almost
random, but if you listen to the music they generate you’ll notice hidden
patterns, patterns which illustrate the importance of pattern to mathe-
matics and music.

Students may conduct general searches for the intersection of, or
connections between, mathematics and music, or, fractal-music composi-
tion on the Internet. O’Haver (2002) has links to many interesting sites. One
is: The Sound of Mathematics (Cummerow, 1998) where students may hear
music based on topics such as:

• combinatorics (www.geocities.com/Vienna/9349/combpent.mid);
• Pascal’s triangle (www.geocities.com/Vienna/9349/pascal.mid); and 
• trigonometry (www.geocities.com/Vienna/9349/functions.html#trig).
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Conclusion

Mathematics is abstract. “This abstraction poses a challenge to the teacher
and student alike, and both will need to draw on knowledge of the world and
link this to mathematical knowledge and its application in various situa-
tions” (VCAA, 2005). One of the ways this can be done, and done
pleasurably, is through the study of music — its production, appreciation
and composition. In this way students can not only see, and perhaps
produce, say Pascal’s triangle, they can hear it. The advantages of using all
of the students’ senses in this way seems pedagogically obvious, since
students learn in often individual and multi-sensory ways. They can also
learn about the importance of pattern to mathematics by listening for
patterns in mathematically structured music, such as fractal music.
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Mathematics on YouTube
In mathematics, the Klein four group or Vierergruppe, often symbolized
by the letter V, is the group Z2 x Z2, the direct product of two copies of
the cyclic group of order 2. It was named Vierergruppe by Felix Klein in
1884. All elements of the Klein group, except the identity, have order 2. 
But since 2006 there has been a musical Vierergruppe in the world of
higher mathematics, an acapella choir whose members are
mathematicians from the Northwestern University (USA) who are
known as Klein Four Group. 
Their very skilful and amusing rendition of their song “Finite Simple
Group (of Order 2)”  became a hit on YouTube, bringing higher
mathematics to the masses. Since that success, the Klein Four Group
have put together an album of their choral work — “a fourteen song
journey of mathematically tinged music.”


