
CALCULATING CONTINGENCIES IN NATURAL ENVIRONMENTS:
ISSUES IN THE APPLICATION OF SEQUENTIAL ANALYSIS

JENNIFER J. MCCOMAS, TIMOTHY MOORE, NORM DAHL, ELLIE HARTMAN,
JOHN HOCH, AND FRANK SYMONS

UNIVERSITY OF MINNESOTA

Analysis and interpretation of behavior–environment relations are increasingly being conducted
with data that have been derived descriptively. This paper provides an overview of the logic that
underlies a sequential analytic approach to the analysis of descriptive data. Several methods for
quantifying sequential relations are reviewed along with their strengths and weaknesses. Data
from descriptive analyses are used to illustrate key points. Issues germane to contingency analysis
in natural environments are discussed briefly. It is concluded that the conceptual distinctions
among contiguity, contingency, and dependency are critical if the logic of sequential analysis is
to be extended successfully to a behavior-analytic account of reinforcement in natural
environments.
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_______________________________________________________________________________

Dependencies involve consequences that
follow some or all instances of behavior but
are not observed in the absence of behavior.
Dependencies can be arranged experimentally
in analog conditions, allowing one to exhibit a
perfect contingency between behavior and
environmental events. Experimental procedures
used in operant models of behavior explicitly
arrange dependencies between responses and
consequences by isolating and manipulating
antecedent- or consequence-based variables
(Skinner, 1938). For example, social conse-
quences can be delivered dependent on problem
behavior in analogue functional analyses to
demonstrate the effects of contingent reinforce-
ment. Under such controlled conditions, mo-
ment-by-moment changes in behavior can be
understood with a great deal of precision,
particularly in relation to reinforcement effects.
By contrast, in less controlled settings, in which
descriptive data are collected during naturally
occurring social interactions, the behavior–

environment dependencies can be difficult to
ascertain. However, Vollmer and Hackenberg
(2001) presented several examples to show that
dependencies are not necessary to demonstrate
reinforcement effects, and more than one
conceptual framework and set of empirical
procedures to derive contingent relations in
social behavior in natural contexts have been
outlined (Martens, DiGennaro, Reed, Szczech,
& Rosenthal, 2008; Vollmer, Borrero, Wright,
Van Camp, & Lalli, 2001).

Increasingly, applied researchers are using
contingency analyses to detect order in behav-
ior–environment relations in naturally occurring
social interactions (Borrero & Vollmer, 2002;
Martens et al., 2008; Sloman, Vollmer, Cotnoir,
& Borrero, 2005; Snyder & Patterson, 1995;
Symons, Hoch, Dahl, & McComas, 2003;
Wehby, Symons, & Shores, 1995). Sequential
analysis is conducted to determine whether a
sequential relation exists between two events of
interest in naturally occurring social interactions
(Yoder, Short-Meyerson, & Tapp, 2004) and has
been applied to socially appropriate and destruc-
tive behavior of individuals with developmental
disabilities (Hoch & Symons, 2007).

Yoder and Feurer (2000) cautioned about the
potential for misuse of sequential analysis
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techniques. Because of this and the lack of a
standardized approach to the analysis of
descriptive data sets, the main purpose of this
paper is to provide an overview of the logic that
underlies the application of sequential analysis to
analyze behavior–environment relations in natu-
ral contexts. First, the basic principles and uses of
sequential analysis are outlined. Next, several
specific indexes of sequential association are
reviewed along with corresponding statistical
analysis issues. Then, we use an existing data set
to illustrate a number of issues specific to
sequential analysis and relevant for behavior
analysis in general. We conclude by discussing
the clinical and theoretical relevance of showing
that two events are or are not sequentially related.

Sequential Analysis: An Overview

Sequential analysis is a set of techniques used
to identify temporal patterns embedded within
sequences of coded behaviors or stimulus events
(Quera & Bakeman, 2000). Sequential analysis
can be conceived of as a tool to tease apart
temporal relations among events by analyzing
event sequences unfolding in time. Reduced to its
core essence, sequential analysis of social interac-
tions serves a single theme: to determine if and
how an action or event is related to another action
or event (Morgan, Dumas, & Symons, 1992).
Sequential analysis is generally used for one or
both of the following purposes: (a) to identify
whether a particular sequence of behavior and
stimulus events occurs to a greater or lesser extent
than might be expected by chance alone, and (b)
to determine whether a given sequence of
behavior and stimulus events differs significantly
across conditions, individuals, or groups.

The terminology of sequential analysis is
relatively straightforward. However, confusion
is sometimes created because sequential analysis
and behavior analysis share some common terms
that have slightly different meanings. For
example, the term antecedent as it is used in
sequential analysis can cause some confusion. In
a sequential analysis, an antecedent refers to the
first of two events, and target refers to the second

event. Thus, in some analyses, the antecedent
may be adult behavior and the target may be
subsequent child destructive behavior. Or, in a
different set of analyses, the antecedent may be
child destructive behavior and the target is the
subsequent adult social interaction. Another
example of terminology that can be confusing
is how the terms conditional and transitional
probabilities are used. These two terms are often
used interchangeably, but technically, a condi-
tional probability is the likelihood that two
events co-occur within some predesignated time
frame. The calculation involves dividing the
occurrences of the antecedent–target relation by
the total occurrences of the antecedent. For
example, the likelihood of a child displaying
disruptive behavior (target) in the presence of the
teacher (antecedent) can be calculated as a
conditional probability in which the number of
intervals in which the child was disruptive in the
presence of the teacher is divided by the total
number of intervals in which the teacher was
present. A transitional probability is a special
instance of the more general class of conditional
probabilities in which time is preserved, and the
specific order of events is relevant (Bakeman &
Gottman, 1997). Specifically, a transitional
probability indicates the likelihood that one
event follows another in sequence. The calcula-
tion is the same, but the nature of the relation
between the antecedent and target is specifically a
sequential one. For example, the likelihood of a
child displaying disruptive behavior following a
teacher instruction would be calculated as a
transitional probability in which the number of
times the child displayed disruptive behavior
following a teacher instruction is divided by the
total number of times the teacher provided an
instruction. For the purposes of examining
whether and what type of relation exists in
behavior sequences, transitional probabilities are
preferred to conditional probabilities and are
used henceforth in this paper.

The unit of analysis in sequential analysis is a
two-event sequence recorded via an observa-

414 JENNIFER MCCOMAS et al.



tional protocol that consists of operationally
defined behaviors sampled across some period
of time or across conditions or contexts. Pairs of
events are organized into a 2 3 2 contingency
table (see Figure 1). By convention, the ante-
cedent occupies the rows, and the target
occupies the columns. The cells are labeled A,
B, C, and D, with A and B in the top row, left
to right, and C and D in the bottom row, left to
right. Cell A contains the tallies of the
behavior–event pair of interest within the
stream of behavioral codes recorded. For
example, the top panel of Figure 1 shows the
number of times child behavior was preceded by
teacher attention in Cell A. Cell B contains
instances of teacher attention that were not
followed by child behavior. Cell C represents
the occurrence of the target event (child
behavior) in the absence of the antecedent
event (teacher attention). Cell D represents all

other pairs of coded events that did not include
the specified antecedent (teacher attention) or
target (child behavior). From such a 2 3 2
contingency table, a number of indexes can be
derived to examine the nature of the behavior–
event sequence of interest.

Indexes of Sequential Associations

A number of basic statistics can be generated
to aid interpretation of the nature of the
association between observed two-event se-
quences (Wampold, 1992). To begin, the
simple probability of two events occurring in
sequence could be calculated as a summary level
statistic. Simple probabilities have been consid-
ered but disregarded as a measure of sequential
association because they do not control for
chance occurrences of the two-event sequence
(Yoder et al., 2004). The calculation for simple
probabilities is the number of tallies in Cell A of

Figure 1. Sample 2 3 2 matrix for tallying and computing sequential relations between adult attention and child
behavior. Observed frequency of the event pair of interest is given in Cell A. Y,Y (antecedent, target) indicates yes
antecedent occurred, yes target occurred as next event in sequence. Observed frequencies of other event pairs are given in
Cells B, C, and D.
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the 2 3 2 matrix divided by the sum of the
tallies in Cells A, B, C, and D; this only yields
information on how often that two-event
sequence was observed in all the observed
sequences. The simple probability does not
provide information about that two-event
sequence relative to anything; thus, it is difficult
to interpret the resulting probability. For
example, imagine that the child behavior
depicted in the matrix in Figure 1 is hand
raising, and the adult behavior is asking
questions. The simple probability of the child
raising his or her hand following an adult
question is 3%. That is, 3% of all observed
sequences involved the child raising his or her
hand following an adult question. The problem
is that we do not know how to interpret that
3% because we do not know anything about
how often the teacher asked questions. There-
fore, it is desirable to examine the probability
conditional on the number of times the teacher
asked questions. Thus, transitional probabilities
are calculated to yield an index of how well one
event (the antecedent) predicts another (the
target) as the next event in the sequence relative
to the overall occurrence (referred to as the base
rate) of the antecedent [A/(A + B)].

Using the example from Figure 1, the transi-
tional probability would be 24%; that is to say
that 24% of the time that the teacher asked a
question, the student raised his or her hand.
Transitional probabilities represent one of the
simplest means of describing a contingent
relation between antecedent and target events
because they represent how often a target event
follows a particular antecedent event (Bakeman
& Gottman, 1997). Although transitional prob-
abilities are among the most commonly used
index to represent the sequence of interest, their
use as an index of sequential association is limited
and can be problematic for at least two reasons.
First, although they do take into account the
overall occurrence of the antecedent, they do not
take into account the overall occurrence of the
target event. This is problematic because it is

difficult to interpret the likelihood of a target
event in the absence of consideration of the
overall occurrence of that target event. For
example, we might know that 24% of the time
a teacher asks a question, the child raises his or her
hand, but we don’t know the overall occurrence
of hand raising or what proportion of hand
raising follows teacher questions. It might be that
100% of the time he or she raises his or her hand,
it is after the teacher asked a question, or it could
be that 5% of the time that he or she raises his or
her hand, it is after the teacher asked a question.
In fact, across observations, conditions, individ-
uals, or groups, the overall frequency of the target
event may vary substantially, making a transi-
tional probability of 24% for a child who raises
his or her hand frequently different and difficult
to compare to a transitional probability of 24%
for a child who rarely raises his or her hand.
Second, transitional probabilities do not provide
information regarding the probability of a two-
event sequence relative to chance. Taken together,
these two limitations are problematic when
comparing transitional probabilities across con-
ditions, individuals, or groups because transition-
al probabilities of the same value may represent
different levels of sequential association due to
differences in overall frequencies (Bakeman &
Gottman, 1997). Based on these reasons, Yoder
and Feurer (2000) suggested that transitional
probabilities should not be used because (a)
readers will make implicit but inappropriate
comparisons between transitional probabilities
of sequences from different conditions or groups,
and (b) more appropriate alternative statistics
exist for making comparisons. A variety of
appropriate alternative indexes and data transfor-
mations, including z scores (Bakeman & Gott-
man), transformed kappa (Wampold, 1992), and
Yule’s Q (Yoder & Feurer) have been recom-
mended for making comparisons across condi-
tions, individuals, or groups.

Z scores are useful for identifying whether a
particular transitional probability deviates signif-
icantly from its expected value (Bakeman &
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Gottman, 1997). This statistic, unlike trans-
formed kappa, Yule’s Q, and phi, which provide
strength-of-association measures, provides a p
value. As Wampold (1992) noted, a z score may
allow rejection of a null hypothesis of randomness
and allow the conclusion that a particular
transition is present beyond that which would
likely be obtained by chance, but it does not
indicate the degree to which a pattern is present.
Accordingly, using z scores in conjunction with
one of the other indexes may provide investiga-
tors with a better understanding of their data.

Although z scores are an appropriate statistic
for assessing whether a particular transitional
probability deviates significantly from its expect-
ed value, the critical problem associated with their
use as a dependent measure is that their numeric
‘‘value is influenced directly by the rate of
occurrence of the given act itself’’ (Morgan et
al., 1992, p. 73). As Bakeman and Gottman
(1997) described, for an effect of a specific size,
the z score becomes larger as the number of tallies
increases. That is, all things being equal, when
contingency tables possess an unequal number of
two-event pairings, the p value of a z score based
on a contingency table with more tallies will be
less (e.g., .01 instead of .05) than the p value of a z
score based on a contingency table with fewer
tallies, even when the underlying sequential
association is the same (Yoder & Tapp, 1990).
Despite these caveats, a z statistic appears to be a
safe option for assessing whether a particular
transitional probability differs significantly from
that which might be expected by chance. The fact
that a z score is one of the only tests of sequential
dependency that provides a p value may be of
interest to some investigators. However, the z
score’s sensitivity to the total number of tallies
makes it less appropriate as a dependent measure
for comparisons across subjects, groups, condi-
tions, or observation sessions.

Because of the relatively limited utility of z
scores, other indexes have been tested as
measures of sequential dependency. Trans-
formed kappa provides an index of effect size

(Wampold, 1992) that may be used in the
analysis of singular transitions for a given event
to a target event, but for a number of reasons
related to properties of its sampling distribution
(i.e., skewness), its use as a dependent variable
in parametric analyses is not recommended (see
Bakeman, McArthur, & Quera, 1996). The phi
coefficient controls for the total number of
coded behaviors, but it may be an unreliable
index because it reaches its maximum values
only when antecedent and target events occur
the same number of times throughout an
observation session (Yoder & Feurer, 2000).

Yule’s Q is a statistic based on a transformed
odds ratio that controls for both the total
number of tallies and the simple probability of
target events (Yoder & Fuerer, 2000). Like
transformed kappa and phi, it produces easy-to-
interpret values that range from 21 to 1, with
zero indicating no sequential association be-
tween given and target events. However, unlike
the other indexes of sequential association that
have been reviewed (z scores, transformed
kappa, and phi), Yule’s Q does not incorporate
marginal totals (from the 2 3 2 table) in its
calculation. Unlike alternative indexes that are
either sensitive to the total number of tallies or
the total number of target or given events,
Yule’s Q is immune to this problem because it
does not incorporate marginal totals in its
calculation. Therefore, Yule’s Q appears to
provide a viable index of sequential association
for assessing both singular transitional proba-
bilities and differences between or across
transitional probabilities. The following analy-
ses will illustrate the implications of using
simple probabilities, transitional probabilities,
and Yule’s Q for comparing social-interaction
data between 2 child–adult dyads.

APPLICATION OF SEQUENTIAL
ANALYSIS FOR DESCRIPTIVE DATA

Purpose

The purpose of the following section is to
illustrate a number of issues described previously,
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to demonstrate how to appropriately answer basic
questions about two events unfolding in time,
and to quantify the magnitude of their associa-
tion. For this demonstration we selected obser-
vation sessions from an existing descriptive
observational data set of social interactions in
child–teacher dyads. Our primary conceptual
interest was in describing and quantifying the
social interaction between preschool children and
teachers during naturally occurring free-play
activities in preschool settings consistent with a
reinforcement effects model. For the purpose of
this illustration, our specific research question was
whether adults were positively responsive to
appropriate child social initiations. To begin to
answer this question, sequential analytic tech-
niques were applied.

Method

Two preschool children (boy, 36 months old;
girl, 42 months old) and one preschool teacher
were directly observed for three 20-min sessions
over the course of 1 week at a university-
affiliated preschool program. Observations oc-
curred during free-play activity times and
sessions were selected based on availability of
the child and the classroom schedule. The
antecedent event was an appropriate child social
initiation (CI) in the form of child statements,
questions, vocalizations, or gestures directed
towards an adult that invited prosocial interac-
tion (e.g., ‘‘let’s play,’’ ‘‘hi, what’s going on’’).
The target event was a positive adult social (AS)
response in the form of positive talk (e.g., praise
statements, affirmative interactions) directed
toward the child. Other forms of adult (e.g.,
neutral, negative) and child (e.g., inappropriate
social initiation, aggression or destruction)
behavior were also observed and coded. Briefly,
prior to beginning data collection, the observers
were trained (until reaching 80% agreement
criteria on all codes) by calibrating to video-
taped samples of participants. Mean overall
agreement (number of agreements divided by
the number of agreements plus disagreements)
for prosocial child behavior was 96% (see

McComas, Johnson, & Symons, 2004, for the
complete data set, coding definitions, and
training procedures).

The primary unit of analysis was the two-
event sequence CI followed by AS. Written as a
transitional probability, it can be represented as
p(AS/CI) or the probability of AS as the next
coded event given CI. For each dyad, data were
pooled across all observation sessions combined,
and pairs of events were organized into a 2 3 2
contingency table for each dyad (see Figure 2).
Cell A contains the tallies of the event pair of
interest (i.e., any two-event pairing when the
child exhibited an appropriate social initiation,
and the next coded event involved adult social
interaction). This is referred to as an event-
based lag 1 analysis. Cell B represents instances
of the occurrence of CI that is not followed by
AS. Cell C represents occurrence of the target
event (AS) in the absence of the antecedent
event (CI). Cell D represents all other pairs of
coded events that did not include the specified
antecedent (CI) or the target (AS).

Results

Summary-level analyses. Summary-level analysis
was used to quantify the frequency (responses per
minute) of prosocial behavior of each CI and AS.
These data were derived prior to construction of
the 2 3 2 matrix and do not appear in the figures.
For Dyad 1 (D1), mean CI was 1.7 per minute,
and mean AS was 3.1 per minute. For Dyad 2
(D2), mean CI was 2.2 per minute, and mean AS
was 1.0 per minute.

Sequential-level analyses. Sequential-level anal-
ysis was used to address the issue of whether
teachers were responsive (i.e., responded contin-
gently) to appropriate social initiations of each
child. To demonstrate the logic that underlies
sequential analysis and the influence of different
base rates across individuals, we computed three
indexes (see Figure 3). First, simple probabilities
of AS following CI were calculated. Second,
transitional probabilities of each target CI and
AS were calculated. Next, Yule’s Q scores
associated with the transitional probabilities were
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Figure 2. Matrix of tallies of child initiations and adult social behavior for computing sequential relations for Dyad 1
(top) and Dyad 2 (bottom).
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calculated (Bakeman et al., 1996). As described
above, Yule’s Q is a transformed odds ratio
bound by 21 and 1 that controls for the total
number of coded behaviors (Quera & Bakeman,
2000).

Simple probabilities. The simple probability
of the two-event sequence is the proportion of
event sequences including the antecedent event
(CI) and the target event (AS) and is calculated
by A/(A + B + C + D). The simple probability
of a child initiation followed by an AS was .05
for Dyad 1 and .04 for Dyad 2. The simple
probability of an AS following a CI is nearly
identical for the 2 dyads. What does this tell us?
The simple probability is limited to indicating
that in all observed sequences, the probability of
an AS following a CI was about the same for
both children, regardless of how often the 2
children displayed social initiations. There is no
information concerning the contingency be-
tween appropriate child social initiations and
positive adult social responses because it is not
known to what proportion of each child’s
initiations the adult responded.

Controlling for antecedent base rate: Transi-
tional probabilities. The transitional probability
is the proportion of instances of the antecedent
or given behavior (CI) that are followed by an
instance of the target behavior (AS) and is
calculated by A/(A + B). Transitional probabil-
ities improve our ability to predict the target
event by considering what event precedes it,
shedding some light on the sequential nature of
the relation between the two designated events
or behaviors. The transitional probability of a
positive AS given an appropriate CI was .36 for
Dyad 1 and .18 for Dyad 2. It is important to
note that transitional probabilities control for
differences in the overall frequency of the
antecedent event. Because the base rate of the
antecedent (CI) was different for Dyad 1
(frequency was 99) and Dyad 2 (frequency
was 134), it needed to be controlled to clarify
the possible sequential relation between the
antecedent (CI) and the target (AS). Thus, the
transitional probability improves our ability to
predict the target event by considering preced-
ing events and controlling for any base-rate

Figure 3. Formulas and computational results of sequential relations for Dyads 1 and 2.
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differences in the frequency of the antecedent.
However, because transitional probabilities can
be influenced by the simple probability of the
target behavior and because there were differ-
ences between Dyad 1 (AS frequency was 183;
simple probability AS was .27) and Dyad 2 (AS
frequency was 61; simple probability AS was
.09), a more interpretable descriptive index of
the sequential relation than transitional proba-
bilities is required.

Controlling for target base rate: Yule’s Q. If the
base rates of the target are not equivalent,
transitional probabilities are uninterpretable
across units of analyses (conditions, individual
subjects, groups). For this demonstration, Yule’s
Q was an appropriate index of sequential
dependency because it is not influenced by the
base rate of the target (or antecedent) and
provides an implicit comparison with an
estimate of chance occurrence of AS after
appropriate CI, whereas transitional probabili-
ties do not (Yoder & Feurer, 2000). Yule’s Q is
calculated by (AD 2 BC)/(AD + BC). Figure 4
shows that the sequential association between

positive adult social and appropriate child social
initiation is greater for Dyad 2 than Dyad 1.
Note the resulting transitional probability was
greater for Dyad 1 than for Dyad 2. Thus, the
Yule’s Q statistic suggests the opposite inference
of the transitional probability.

SUMMARY AND CONCLUSIONS

Operant models that rely on experimental
analyses explicitly arrange dependencies be-
tween responses and consequences. In descrip-
tive studies, the dependency is not programmed
and is largely unknown (Vollmer et al., 2001).
One purpose of sequential analysis is to
quantify the magnitude of association between
events, a key feature of the dependency. Yule’s
Q (and other indexes appropriately used) are
critical for interpretation of the magnitude of
the relation for two-event sequences, but are not
necessarily magic bullets for a complete behav-
ioral analysis. In fact, the best measures of
contingency strength are not yet known;
therefore, an approach that involves multiple

Figure 4. Three sequential indexes arrayed for Dyad 1 (D1) and Dyad 2 (D2), illustrating the variation in the
strength of sequential association between appropriate child social initiations (CI) and positive adult responses (AS) using
three indexes. SP 5 simple probability of the two-event sequence; TP 5 transitional probability; YQ 5 Yule’s Q.
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evaluations of contingency on the same set of
descriptive data appears warranted to examine
behavior–environment relations so that impor-
tant relations are not missed.

How good a tool is sequential analysis for
identifying reinforcement contingencies in the
natural environment in the absence of experi-
mental manipulation? It depends, in part, on
how reinforcement contingency is defined and
operationalized. As reported earlier, a depen-
dency is not a necessary condition to demon-
strate reinforcement effects (Vollmer & Hack-
enberg, 2001). Instead, contingent relations
have been used to infer reinforcement effects
in natural sequences of behavior–environment
events (e.g., Borrero & Vollmer, 2002; Sloman
et al., 2005; Symons et al., 2003; Vollmer et al.,
2001). A contingency between a response and a
consequence exists when the response is both
necessary and sufficient to generate that conse-
quence (Watson, 1979). The sufficiency of a
response in producing a consequence can be
considered as the conditional probability of the
consequence given the response. The necessity
of a response in producing a consequence can
be considered by comparing the conditional
probability with the simple probability of the
consequence (Rescorla, 1988; Snyder & Patter-
son, 1995). Thus, there appears to be both
logical and emerging empirical support for the
use of contingency analyses to infer reinforce-
ment effects in descriptively derived data.

The utility of sequential analysis for identifying
reinforcement contingencies also depends on the
correct application of sequential analytic tech-
niques (i.e., accounting for or correcting for
differences in base rates, choice of index of
sequential association). In this paper, our primary
purpose was to address the issue by introducing,
describing, and demonstrating an application of
sequential analysis. As illustrated, different con-
clusions can be reached depending on the point at
which the sequential analysis is stopped. In this
application, opposite conclusions would be made
about the nature of the relation between the 2

children’s appropriate social interactions and
their teachers’ social behavior. Knowing when
the analysis is complete depends on consideration
of the context in which the data are collected and
the types of planned comparisons to be made
(Symons, 2005).

In terms of inferring a reinforcement effect, in
some approaches (including our own), statistical
analyses are applied to a priori specified sequences
of interest to determine whether the target event
occurs more or less often than expected by chance
(i.e., a p value is assigned), and the magnitude of
association between the two events is calculated.
Then, the logic and procedures of a matching law
analysis are applied to determine whether the
relation between the two events fits or is consistent
with a reinforcement effects model (Sloman et al.,
2005; Symons et al., 2003). We recognize that
other researchers do not conduct statistical tests of
significance because statistically significant differ-
ences are not a necessary condition to observe
reinforcement effects. Clearly, behavior can be
maintained in the absence of a statistically
significant difference. Consider, for example, a
situation in which a single instance of a reinforcer
presentation is sufficient to maintain behavior
(Skinner, 1956). This is yet another reason to
consider use of multiple approaches to contin-
gency analysis in evaluating descriptive data.

There are a number of additional issues
beyond the immediate scope of this paper that
warrant consideration in the application and
extension of sequential analysis to applied
behavior analysis, including (a) establishment
of a mutually exclusive and exhaustive code set;
(b) the question of whether consecutive codes
may or may not repeat; (c) the impact of
autocorrelation; (d) modifications to account
for differences among interval-based, time-
based, or event data; and (e) the value and
utilization of sampling permutations or ran-
domization tests (see Bakeman & Gottman,
1997, for further elaboration of these points).

For behavior analysis, critical conceptual and
definitional distinctions remain central to the
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issue of inferring functional relations from
descriptive data sets; these include contiguity,
contingency, and dependency. Sequential anal-
ysis can be a powerful tool to clarify critical
features of the relations between and among
variables in descriptive data sets, but like all
analytic tools, it is limited by the nature of the
data and the conditions of their generation.
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