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Many students have difficulties with basic algebraic concepts at high school and at 
university. In this paper two levels of algebraic structure sense are defined: for high 
school algebra and for university algebra. We suggest that high school algebra 
structure sense components are sub-components of some university algebra 
structure sense components, and that several components of university algebra 
structure sense are analogies of high school algebra structure sense components. We 
present a theoretical argument for these hypotheses, with some examples. We 
recommend emphasizing structure sense in high school algebra in the hope of 
easing students’ paths in university algebra. 

The cooperation of the authors in the domain of structure sense originated at a 
scientific conference where they each presented the results of their research in their 
own countries: Israel and the Czech Republic. Their findings clearly show that they 
are dealing with similar situations, concepts, obstacles, and so on, at two different 
levels—high school and university.  

In their classrooms, high school teachers are dismayed by students’ inability to 
apply basic algebraic techniques in contexts different from those they have 
experienced. Many students who arrive in high school with excellent grades in 
mathematics from the junior-high school prove to be poor at algebraic 
manipulations. Even students who succeed well in 10th grade algebra show 
disappointing results later on, because of the algebra. Specifically, some students 
drop out of advanced mathematics in 11th grade due to an inability to apply 
algebraic techniques in different contexts (Hoch & Dreyfus, 2004, 2005, 2006). 

Similarly, university lecturers involved in training future mathematics teachers 
often notice their students’ difficulties in developing a deeper understanding of 
mathematical notions that they meet in their mathematics courses. We refer to 
experiences from Novotná and Stehlíková’s longitudinal observation of university 
students—future mathematics teachers—during the course Theoretical Arithmetic 
and Algebra (Novotná, Stehlíková & Hoch, 2006). Students enter the course having 
experience with number sets and with linear and polynomial algebra (Novotná, 
2000), but they often have problems with basic algebraic concepts.  

We would like to emphasize the danger of assuming that students know or can 
do certain things just because they were in the school curriculum. For example, 
some high achieving students in 11th grade of high school were unable to factor 
the expression 81 – x2 (Hoch & Dreyfus, 2006) and others were unsure whether (xy)2 
is the same as x2y2. It is worthwhile also noting the low level of manipulative ability 
found in some high achieving students (those most likely to continue to 
university). In an algebra questionnaire distributed to 176 high achieving high 
school students we found that the majority did not manage to do more than half of 
the exercises accurately, or even with only minor errors (Hoch & Dreyfus, 2006). 
We had expected these students to maintain a high level of instrumental 
proficiency (manipulation skills), and that any difficulties they displayed would be 
on a relational level (structure sense). Yet these students performed neither at a 
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high instrumental level nor at a high relational level. 

The term structure is widely used and most people feel no need to explain 
what they mean by it. In different contexts the term structure can mean different 
things to different people (e.g., Dreyfus & Eisenberg, 1996; Hoch & Dreyfus, 2004; 
Stehlíková, 2004). The term algebraic structure is usually used in abstract algebra 
and may be understood to consist of a set closed under one or more operations, 
satisfying some axioms. Hoch (2003) discussed and analysed structure in high 
school algebra, considering grammatical form (Esty, 1992), analogies to numerical 
structure (Linchevski & Livneh, 1999), and hierarchies (Sfard & Linchevski, 1994), 
culminating in a description of algebraic structure in terms of shape and order.  

Structure Sense in High School Algebra 
We explain students’ difficulty with applying previously learned algebraic 

techniques in high school as a lack of structure sense, a term coined by Linchevski 
and Livneh (1999). They suggested that students’ difficulties with algebraic 
structure are in part due to their lack of understanding of structural notions in 
arithmetic. Their conclusions were based on research on students just before and 
just after beginning algebra. The structure they examined is the order of operations 
in arithmetic expressions. There was no discussion of structure or structure sense 
in terms of what that might mean beyond the initial stage. 

 We consider structure sense to be an extension of symbol sense, which is an 
extension of number sense. Number sense can be described as an intuition for 
numbers that includes such things as an eye for obviously wrong answers and an 
instinct for choosing the arithmetic operation needed to solve a given problem 
(Greeno, 1991). Arcavi (1994) suggested that symbol sense is a complex feel for 
symbols, which would include appreciation for the power of symbols, ability to 
manipulate and to interpret symbolic expressions, and a sense of the different roles 
symbols can play in different contexts. Arcavi talked about algebraic symbols 
displaying structure, and Zorn (2002), for example, talked about unpacking the 
symbolism to reveal meaning and structure.  

A sense for structure has only been hinted at in the literature. Kieran (1992) 
discussed students’ inability to distinguish structural features of equations. 
Linchevski and Vinner (1990) suggested that one of the components of success in 
school mathematics is the ability to identify hidden structures in algebraic terms. 
Kirshner and Awtry (2004) discussed visual salience of algebra rules: “Visually 
salient rules have a visual coherence that makes the left- and right-hand sides of 
the equation appear naturally related to one another” (p. 229).  For example, the 

rule 
w

x
!

y

z
=

wy

xz
 is visually salient while the rule 

w

x
÷

y

z
=

wz

xy
 is not. Tall and 

Thomas (1991) indicated that versatility of thought is necessary to switch from an 
analytical approach to a global one, giving as an example the ability to see 2x + 1 as 
a common factor in the expression (2x + 1)2 – 3x(2x + 1). Pierce and Stacey (2001) 
defined and investigated algebraic expectation, which includes identifying form 
and linking form to solution type. Structure sense requires anticipation, which 
Boero (2001) considered to be crucial for directing the transformation of 
mathematical structure when attempting to solve an algebraic problem. 

Our definition of high school (HS) structure sense is an operational definition 
that will enable us to determine by observation whether a student is using 
structure sense. This definition was developed as follows. A preliminary definition 
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was formulated according to theoretical considerations and empirical observations. 
Five experts in mathematics education research were interviewed to acquire their 
views on structure sense. These views were used as a basis for an intermediate 
definition of algebraic structure sense that was used as a guideline to design 
questionnaires. These questionnaires, administered to students near the end of 10th 
grade, were analysed and found to be inadequate to identify some aspects of 
structure sense. It was thus considered necessary to refine the definition further. 
The idea was developed and refined by Hoch (2007) who arrived at the following 
definition. 

Students are said to display structure sense for high school algebra if they can: 
1. Recognise a familiar structure in its simplest form 
2. Deal with a compound term as a single entity and through an 

appropriate substitution recognise a familiar structure in a more 
complex form 

3. Choose appropriate manipulations to make best use of a structure  
The following are examples for each type of structure sense, as related to the 

structure a2 – b2 (difference of squares). 
• Structure sense 1: Factor 81 – x2 —recognise difference of squares and 

factor accordingly 
• Structure sense 2: Factor  (x – 3)4 – (x + 3)4—deal with (x – 3)2 and (x + 

3)2  as single entities, recognise difference of squares of these entities, 
and factor accordingly 

• Structure sense 3: Factor 24x6y4 – 150z8—see the possibility of difference 
of squares, extract common factor to get 6(4x6y4 – 25z8), deal with 2x3y2 
and 5z4 as single entities, recognise difference of squares of these 
entities, and factor accordingly 

An important feature of structure sense is the substitution principle, which 
states that if a variable or parameter is replaced by a compound term (product or 
sum), or if a compound term is replaced by a parameter, the structure remains the 
same. 

Structure Sense in University Algebra 
Novotná et al. (2006) adapted structure sense and defined it for university 

algebra. University algebra (UA) structure sense was developed by using 
longitudinal observations of future mathematics teachers, by analysis and 
classification of these students’ mistakes, and by looking for analogies with HS 
structure sense (Novotná, et al., 2006). We distinguish two main stages of UA 
structure sense, SSE and SSP, each of which is further subdivided into components. 
In this paper, we define them as follows. 

SSE: Structure Sense as Applied to Elements of Sets and the Notion of 
Binary Operation 

Students are said to display SSE if they can: 
• (SSE-1) Recognise a binary operation in familiar structures 
• (SSE-2) Recognise a binary operation in non-familiar structures 
• (SSE-3) See elements of the set as objects to be manipulated, and 

understand the closure property  
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The vague terms ‘familiar and non-familiar structures’ can be explained as 
structures that must be seen by students as conceptual entities, so that they that can 
take these objects as inputs to procedures (Harel & Tall, 1991). What will be 
‘familiar’ depends on how the individual student was introduced to abstract 
algebra. 

SSP: Structure Sense as Applied to Properties of Binary Operations 
Students are said to display SSP if they can: 

• (SSP-1) Understand identity element in terms of its definition 
(abstractly) 

• (SSP-2) See the relationship between identity and inverse elements 
• (SSP-3) Use one property as a supporting tool for easier treatment of 

another: (e.g. commutativity for identity element, commutativity for 
inverse element, commutativity for associativity) 

• (SSP-4) Keep the quality and order of quantifiers 
SSP involves attending to interrelationships between objects that are 

consequences of operations. We, as teachers, “would like our students to attend 
not to the particular objects and operation, but to the fact that imposing the 
operation on the set of objects creates interrelationships which are important, such 
as associativity, inverse elements, etc.” (Simpson & Stehlíková, 2006, p. 350). SSP 
can be analysed only for students who have at least partial SSE. The situation is 
more complicated here, involving both objects (identity and inverse elements) and 
properties (commutative, associative, and distributive—in the case of two 
operations). Moreover, there are two focus points: the first on individual properties 
and objects, the second on the role of quantifiers in the definition (their type and 
order). For the subdivision of SSP, we looked into mutual relationships among 
objects. 

The following are examples for types of structure sense, as related to binary 
operations and their properties: 

• (SSE-1): Students display SSE-1 if they can determine whether the 
following are binary operations (N is the set of natural numbers, Z is 
the set of integers, R is the set of real numbers):  

• 
 

N ,!( ) : 
 
x ! y = x + y ; 

 
N ,!( ) : 

 
x ! y = x ! y ; Z ,!( ) : x ! y = x + y ;  

• Z ,!( ) : x ! y = x " y ; Z ,!( ) : x ! y = x " y ; R,•( ) : x • y = x ÷ y ;  
• 

 
R,!( ) : 

 
x ! y ! "k #R : x = y + k . 

• (SSE-2): Students display SSE-2 if they can determine whether the 
following are binary operations:  

• Z ,!( ) : x ! y = x + y " 4 ; R,!( ) : x ! y = x " y # 2  Z ,!( ) : 
x ! y = 5x " 6y ; 

• Z ,•( ) : x • y = 3x + xy ; 
 

R,!( ) :  
 
x ! y = x

y ; (R, ∆): x ∆ y = 
9x

2

! 16y
2

6x ! 8y
. 

• (SSE-3): When students are asked to find the identity element in (F, ○), 
where F is the set of real functions defined on R and ○ is the 
composition of functions, they display SSE-3 if they start working with 
properties of mappings and discover that n(x) = x is the identity 
element in this structure. Students who start working with numbers 
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display a lack SSE-3; later they may answer that the identity element is 
1 without taking into consideration the nature of objects in the set. 

• (SSP-1): Students display SSP-1 if they answer that 99 is the identity 
element in (Z99, +), where Z99 = {1, 2, ... 99} and + is addition in 
congruence modulo 99. They lack SSP-1 if they answer that there is no 
identity element because there is no 0 in the set.  

• (SSP-2): Students display SSP-2 if, given (O, +), where O is the set of 
odd numbers and + is the addition of integers, they answer that it is not 
meaningful to look for inverse elements because there is no identity 
element in the structure (0 ∈ Z is not an element of O)1.  They lack SSP-2 
if they say that the inverse element of 3, for example, is –3 because both 
are odd. 

• (SSP-3): In the case of (R+, ○), where R+ is the set of positive real 
numbers and  

• x ○ y = xy, students display SSP-3 if, due to  the absence of 
commutativity, they start checking both equalities x ○ n = n ○ x = x.  
They show a lack of SSP-3 if they say that identity element is n = 1 
because x1 = x (correct answer: n does not exist – 1x ≠ x). 

• (SSP-4): Students display SSP-4 if, given (L, ∗), where L is the set of all 

positive rational numbers, x ∗ y = 
x

2
 + 

y

2
 + x, they answer that there is 

no identity element because although for any x, x ∗ n = 
x

2
 + 

n

2
 + x and 

therefore the equation x ∗ n = x has the solution n =
x

1 + 2x
 , i.e. n 

depends on x. Students do not display SSP-4 if they answer that 

n =
x

1 + 2x
 is the identity element: instead of “there exists n such that 

for all x ...”, they use “for all x there exists n such that ...”.  
Note: On the other hand, here the students display SSP-3 by using 

commutativity for inverse elements.  
The model presented here accounts for only binary operations and their 

properties. A model for groups, for example, would have to be far more complex 
(see e.g., Dubinsky et al., 1994).  

Research Question and Hypotheses 
In this paper we examine how structure sense for algebraic expressions or 

                                                
1 This can also be interpreted in terms of students’ concept image of inverse element. The 
number –3 could have simply been chosen because their concept image of inverse element is 
a negative number. It is widely accepted that students tend to rely on their images from 
number theory when studying and applying group theory (e.g., Stehlíková, 2004). They 
often hold a deeply rooted image of the additive identity element in numerical contexts 
necessarily being 0, and the additive inverse element a negative number. 
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equations is related to structure sense for structures in abstract algebra. We discuss 
two types of relationship between high school (HS) and university algebra (UA) 
structure sense: 

1. HS structure sense components as sub-components of UA structure 
sense components.  

2. UA structure sense components as analogies of HS structure sense 
components. 

Our hypotheses are:  
For relationship type 1:  

• R1-1: A student who does not have a high level of structure sense 2 (HS) 
cannot display a high level of SSE-2 (UA). 

• R1-2: SSP (UA) cannot be developed without a high level of structure 
sense 1 (HS) and structure sense 3 (HS). 

For relationship type 2:   
• R2-1: SSE-1 (UA) is an analogy or generalisation of structure sense 1 

(HS); a student who does not have a high level of structure sense 1 (HS) 
cannot display a high level of SSE-1 (UA). 

• R2-2: SSP (UA) (mainly SSP-2 and SSP-3) is an analogy or generalisation 
of structure sense 3 (HS). 

Theoretical Analysis of the Hypotheses  
We present here theoretical justifications for the four hypotheses.  
R1-1: Let M be a set, and ○ a relation between M x M and M. Often, 

determining whether ○ is an inner binary operation on M—the mapping M x M  
M—requires simplifying the formula (e.g. by factoring some algebraic expressions 
or other editing of the formula). To perform the necessary steps requires structure 
sense 2 (HS). 

Example: Let x ∆ y = 
9x

2

! 16y
2

6x ! 8y
. Decide whether ∆ is a binary operation on the 

set of real numbers and if so, determine its properties. The formula defining ∆ is in 
non-standard form. x ∆ y is not defined on R. Examining its properties requires 
structure sense 2 (HS); if we want to simplify the formula we need to factor the 
numerator and denominator.  

Remark: Students may solve the task in this example without factoring; in this 
case, it is sufficient if they remember the existence condition (denominator not 
equal 0) and then they do not need to use HS structure sense 2.  

R1-2: SSP deals with the properties of structures with binary operations. To 
find out if structure (M, ○) has an identity element, which elements of M have an 
inverse element, or if ○ is a commutative or associative operation requires, in most 
cases, a treatment of algebraic expressions and solution of equations. Similarly to 
R1-1, this cannot be done without developed structure senses 1 and 3 (HS). 

Example: Let us define (D, ○) as follows: D = R+ ∪ {0}, x ○ y = x + y + xy. It is 
obvious that ○ is a binary operation on D. The following are examples of questions 
that require SSP (UA): 

• Does an identity element exist? If yes, find it. In order to answer this 
question, the solver has to decide if there exists n ∈ D such that for each 
x ∈ D the following is satisfied: x + n + xn = x (the operation is 
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commutative therefore it is sufficient to solve one equation instead of 
two); this leads to solving the equation n + xn = 0 with the unknown n. 
A student lacking structure sense 1 (HS) cannot find the answer n = 0.   

• Find all x ∈ D which have inverse elements in (D, ○) and determine 
them. In order to answer this question, the following equation has to be 
solved for each x ∈ D: x + x-1 + x x-1 = 0. Structure senses 1 and 3 (HS) 
are needed for the solution. 

R2-1: Structure sense 1 (HS) deals with the simplest forms of algebraic 
expressions and equations. It can be reformulated as being able to recognise the 
affinity of simple formulas or equations in standard form, when the solver knows 
the standard forms. Several step factoring or substitution is not required; the 
affinity is “transparent”. SSE-1 (UA) requires an analogical treatment in the 
following sense: The general definitions (analogy to the general 
formula/equation/…) are given in their standard form, and checking the concrete 
“simple” operation characteristics and properties is done for the simplest 
(“transparent”) algebraic structures. See the examples of SSE-1 above. 

R2-2: Structure sense 3 (HS) deals with choosing appropriate manipulations to 
make best use of a structure. SSP (UA) can be considered as analogies because 
here, the choice of appropriate operation properties as tools for recognising or 
finding others is required. For example, in case of SSP-2, students may be familiar 
with the definition of identity and inverse elements, they might even be able to 
apply the general definition for the property in question, but do not pay attention 
to the existence of all necessary prerequisites, such as the existence of identity 
element in the structure. In the case of SSP-3, students can know the formal 
definitions of properties to be checked, can even be able to apply the definitions in 
individual cases, but do not make use of the consequences of already confirmed 
properties. Let us illustrate this in the case of identity element and commutativity: 
If an operation is proved to be commutative, then one equation only is sufficient to 
determine the identity element. In the case of commutativity and associativity this 
is even more efficient, as seen in the following example. 

Example: Is the operation ○ in the structure (M, ○), where M = {e, a, b, c} and ○ 
is defined in the table below, associative? 

Table 1  
Structure  (M, ○) 

○ e a b c 
e e a b c 
a a b c e 
b b c e a 
c c e a b 

To verify that associativity is valid in a structure with n elements, (maximum 
of) n3 equalities are to be checked. Here 43 equalities would be required for ○ [(x ○  
y) ○ z = x ○ (y ○ z) for all x,  y,  z ∈ M], without the benefit of commutativity. Using 
commutativity reduces considerably the number of necessary calculations. With 
the use of commutativity, the order of elements does not change the results. 
Applying commutativity can be seen as the best use of the structure’s properties.  
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Illustration from Future Teachers’ Work 
We present here some examples from our teacher trainers’ practice illustrating 

the theoretical conclusions. These examples were selected from a test solved by 31 
students attending the pre-service secondary mathematics teacher-training course 
Algebraic Structures (usually a 3rd year course) at the Faculty of Education in 
Prague, in the school year 2005/06.  

The Faculty of Education of Charles University in Prague offers mathematics 
teacher training for both primary and secondary mathematics. The future lower 
and upper secondary school teachers (from the 6th till the 12th grade) take a five-
year course. Mathematics is combined with other subject (e.g. physics, descriptive 
geometry, computer science, chemistry, biology, geography, arts, or foreign 
languages).  

Future teachers entering faculties of education were taught a varied range of 
mathematics at secondary schools of different types. We assume that students—
future mathematics teachers—have positive attitudes towards this subject. 
Unfortunately, this attitude is not always accompanied by sufficient knowledge of 
mathematical concepts and skills. Students’ structure sense (HS) is at different 
levels. Before the 3rd year of their pre-service mathematics teacher training at the 
Faculty of Education of Charles University, the future teachers successfully 
completed mathematical courses of algebra, geometry, calculus, and problem 
solving. They are several university level textbooks available for each course; 
properties or binary operations are included (e.g. in Novotná & Trch, 1993).  

The aim of test was to acquire feedback about students’ knowledge and skills 
in the domain of introduction to abstract algebra. The four tasks below focused 
directly on the relationships between structure sense at HS and UA levels. 
(Altogether there were eight tasks, others dealing with inequalities at the HS level 
and binary relations at the UA level.) 

1. Solve in R: (x + 3)
2

! 6x + 18 . 

2. Simplify in R: 
(x ! 2)

4

! (x + 2)
4

14x
2

! 2x
.   

3. Let x ∆ y = 
9x

2

! 16y
2

6x ! 8y
. Decide whether ∆ is a binary operation on the 

set of real numbers and if so, determine its properties.  
4. Consider the following structure: (Z, •), where Z is the set of integers, 

and x • y = x + y – 4. If • is a binary operation on Z, determine its 
properties. If the neutral element exists, find the inverse elements of all 
integers for which they exist. 

Tasks 1 and 2 are standard HS level tasks, and Tasks 3 and 4 are UA level 
tasks. In Task 1, the use of a mechanical solving algorithm (opening brackets, 
transferring sides, collecting like terms) results in the inequality x

2

! 9 " 0 . This 
can be easily solved using structure sense 1 (HS). Alternatively, the solver could 
choose to factor to obtain (x + 3)

2

! 6(x + 3) " 0 , using structure sense 3 (HS). 
Simplification (factoring numerator and denominator) in Task 2 requires structure 
sense 2 (HS). Theoretically, the numerator (x ! 2)

4

! (x + 2)
4  could also be 

simplified by opening brackets and collecting like terms, but this is a long and 
cumbersome method, inviting calculation errors.  
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Tasks 3 and 4 are UA level tasks. The formula defining the operation in Task 3 
is in non-standard form. x ∆ y is not defined on R. Examining its properties 
requires structure sense 2 (HS). Task 4 is constructed as an analogy between 
structure sense 1 (HS) and SSP (UA). 

In these test items, the relationships among HS and UA structure senses can be 
clearly traced. Tasks 1 and 2 were used as control tasks for checking HS structure 
sense.  

Let us denote success in solving a task by 1, and failure by 0. We will record 
students’ answers in the test by an ordered foursome (x1, x2, x3, x4) where xi = 1 in 
the case of a correct solution to Task i, and 0 in the case of an incorrect solution. 

Theoretically, there are 24 possible foursomes, some of them being more 
probable and some nearly impossible (according to our hypotheses). For example 
the following explanations of the success/failure in the tasks are considered: 

• (1, 1,  ,  ) represents a typical result of a student with a good command 
of HS structure sense   

• (   ,   , 1, 1) indicates UA structure sense 
• (0, 0,   ,   ) represents a result of a student lacking HS structure sense 
• (  ,   , 0, 0) indicates lack of UA structure sense  

Examples from the test: 
(1, 1,   ,   ) occurred in 18 cases divided as follows: 

• (1, 1, 0, 0): 6 students [indicating HS structure sense developed, no UA 
structure sense] 

• (1, 1, 1, 0): 8 students [indicating HS structure sense developed, SSE-3 
(UA) developed, SSP (UA) lacking] 

• (1, 1, 1, 1): 4 students [indicating HS and UA structure sense developed] 
(0, 0,   ,   ) occurred in 2 cases divided as follows:  

• (0, 0, 0, 0): 1 student [indicating neither HS nor UA structure sense] 
• (0, 0, 1, 0): 1 student [we explained this case in the remark in R1-1: The 

student remembered that a denominator cannot equal 0 and did not 
need to use HS structure sense—he did not simplify the expression]  

Although there were other foursomes, most of them were unique cases; we 
mention only those that occurred more frequently: 

• (1, 0, 0, 0): 3 students [no UA structure sense] 
• (1, 0, 1, 0): 4 students [SSE-3 (UA) developed, SSP (UA) lacking] 

All, (bar one, explained above) of these cases could be explained by our 
hypotheses. 

Concluding Remarks 
In this paper, we presented theoretical arguments for each of four hypotheses. 

We used examples from the pre-service mathematics teacher-training course 
Algebraic Structures at the Faculty of Education in Prague as supporting arguments 
for our hypotheses. Mathematical backgrounds of students from their upper 
secondary studies2 differ. On the one hand, the knowledge and skills of students 

                                                
2 In the Czech educational system, pre-university studies are divided into primary (age 6-
11), lower secondary (age 12-15), and upper secondary (age 15-19). In Israel they are divided 
into primary (age 6-12), junior-high (age 12-15), and high school (age 15-18). We consider 
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coming from technical schools are practically oriented. On the other hand, the 
knowledge of those who attended general upper secondary schools and specialised 
in mathematics and sciences is of a theoretical, more abstract nature. 

We have characterized HS and AS structure sense and shown how they are 
manifested in the high school and university algebra environment. The roots of our 
perspective and the related literature are described in the theoretical background. 
The transition from HS to AS could be analysed in terms of Tall’s (2007) framework 
of long-term learning, which consists of three distinct ‘worlds of mathematics’— 
conceptual embodiment, proceptual symbolism and axiomatic formalism. HS 
structure sense is based on symbolic thinking (referring to the use of symbols that 
arise from performing an action schema, such as counting, where the symbols used 
become thinkable concepts, such as number), whereas UA structure sense belongs 
to the formal thinking “world” (based on formal definitions and proof). 

If we attribute students’ difficulties to their lack of structure sense, we can 
concentrate on developing their structure sense. Our results indicate that HS 
symbolic world structure sense could be a prerequisite for UA formal world 
structure sense. Obviously more research is required to verify this, but the 
implication is clear. Encouraging teachers in high school to place more emphasis 
on algebraic structure could help to ease students’ transition from school to 
university mathematics. The relationships between the UA and HS structure senses 
studied in our paper can serve as a basis for a teaching programme explicitly 
addressing the problematic issues. 

We see an attention to structure as being an important part of mathematics in 
general, and the learning of algebra in particular. The view of mathematics that 
students build up during their school career survives long after they leave 
secondary school. If we do not develop an awareness of structure in students 
during their teacher training at the faculty, this lack of awareness may return with 
the teachers back to the schools. The teaching of mathematics only as a set of 
precepts and instructions to be learned by rote can lead to ever-deeper formalism 
in the teaching of mathematics. This can result in a lack of understanding of the 
conceptual structure of the subject, and an inability to use mathematics 
meaningfully when solving real problems. 
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