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Infroduction

sing investigations in teaching mathematics has for many years

become an established feature of most curricula around the world. And
with good reason. Investigations can be a vehicle for enabling children to
experience the genuine excitement that comes from mathematical
discovery. Of course, most of the investigations used in teaching are insti-
gated by the teachers themselves, who already have prior knowledge that
they will lead to specific, desirable discoveries or conclusions. This is
perfectly valid because, for the individual child who discovers a particular
relationship or connection or rule, it really does not matter that it was
already known by others. The point is that it is new for them.

But the true spirit of inquiry and investigation lies in a mind-set that
continually asks questions about a given situation. And it is always going
to be more interesting if you yourself, rather than a third party, is the one
to ask the questions. This is what, as a loftier purpose, we should ultimately
be trying to encourage in our pupils. This is idealistic of course and I was
recently brought back down to earth by some of my students (training to be
teachers) when we were discussing these ideas. I was suggesting that one
of the most fruitful questions we can ask about a mathematical situation is
“What would happen if...?” This kind of question gives us the freedom to
change anything we like in the original situation (e.g., some parameters or
conditions) and is also likely to lead us into uncharted territory. I was also
claiming that it is easy to ask this question in any mathematical situation.

One of my students then commented that topics like Pascal’s Triangle,
the Fibonacci Sequence, Golden Ratio, etc. must be among the most
explored topics in mathematics and are often used for investigations in
teaching. How is it possible to come up with any new questions on such
topics? An Internet search using Google, for example, gives thousands of
hits for each of these phrases (in fact, well over a million for the Golden
Ratio!) So what can possibly be left to investigate? Of course, I made the
point again that this does not really matter as long as what you are inves-
tigating is new to you. However, the challenge was implicitly there: use your
question to come up with something we have not seen before.
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Pascal’s Triangle

1 5 10 10 &5 1
1 6 15 20 15 6 1

Let us look at Pascal’s Triangle and first remind ourselves of some of the
reasons why it is interesting. Largely it is because of the many patterns that
emerge from the triangle and the links with other areas of mathematics
(binomial expansion etc.) For example, in the diagonals we find the
sequence of natural numbers and the triangle numbers, and the sums of
“oblique” diagonals even yield the Fibonacci sequence. Perhaps the most
striking pattern concerning sums is found in the rows of the triangle and
this pattern is easily found by children:

Row 1 2 3 4 5 6

Sum 1 2 4 8 16 32

This gives us the general formula 2™ for the nth row.

Let us go back to the rule for generating Pascal’s Triangle. It is simply
adding two adjacent terms in a row to produce an element in the next row.
So, what happens if we start with different numbers? Since it is with the
second row that we actually have a pair of numbers to add, then for the
purpose of our investigation the first row is essentially redundant. We could
say that we are really looking at Pascal Trapeziums for which the original
one starts:

Interestingly, this immediately gives us a slightly different, and simpler,
generalisation for the sums of rows. That is, we now have the formula 2" for
the nth row.

Now, let us start with 1,2 for the first row. (It does not matter that this
is not connected to any specific mathematical relationship, as with binomial
expansions; we are simply playing with the numbers here.) The Pascal
Trapezium becomes:

1 6 14 16 9 2
1 7 20 30 25 11 2
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Interesting patterns again appear, as with the original Pascal Triangle. Of
course, we still have a diagonal of the natural numbers (now starting at 2)
which is generated by the 1 in the first row. In addition, we now have a diag-
onal of the odd numbers (generated by the 2 in the first row) and this
naturally gives rise to a diagonal of the square numbers next to it. However,
let us keep our focus on the sums of the rows. We now have:

Row 1 2 3 4 5 6

Sum 3 6 12 24 48 96

This is just as striking as the original Pascal trapezium situation and just
as easily generalisable. That is, we have 3.2™" for the nth row. But notice,
in passing, that we have curiously returned to the term 2™ in this formula.

Let us try another starting point, for example 2,3 for the first row and
denote this trapezium by Pascal (2,3).

2 9 15 11 3
2 11 24 26 14 3
2 13 35 50 40 17 3

The table of row sums gives us:

Row 1 2 3 4 5 6

Sum 5 10 20 40 80 160

Again, the pattern is striking and the generalisation becomes 5.2"" for
the nth row. Moreover, the overall pattern of these results for different
starting rows is also becoming clear. We appear to have a constant term of
2™ for each formula and the multiplier of this term appears to be simply
the sum of the two numbers in the first row. Going back to our first Pascal
Trapezium, which we now designate Pascal (1,1), we see that this also fits
in with our new generalisation. That is, the formula can be written as 2.2™!
for the nth row and it is only because the multiplier happens to be 2 that it
simplifies to 2" as before.

The explanation for the doubling feature of these results, although
simple enough in the original Pascal Triangle, is perhaps even clearer in
these generalised versions. For example, let us consider the transition from
the 4th to the 5th row in the Pascal (2,3) pattern. If we write it without actu-
ally performing the additions but simply recording the numbers involved,
we have:

2 9 15 11 3
2 2,9 9,15 15,11 11,3 3

Now we see clearly that the 5th row is just duplicating the 4th row twice.
Because Pascal’s Triangle is symmetric, a similar illustration for that
involves a confusing number of repetitions of individual numbers. This also
helps us to see the reason for the multiplier. If the first row consists of a,b
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then the consecutive row sums become:

Row 1 2 3 4 5 6

Sum a+b 2(a+b) | 4(a+b) | 8(a+b) | 16(a+b) | 32(a+b)

Our final generalised result then becomes, for a Pascal (a,b) Trapezium:

Sum of terms in the nth row = (a+b).2™"

Fibonacci

Let us turn our attention now to another popular source of investigations.
What is often referred to as the Fibonacci sequence begins with 1,1 and
subsequent terms are recursively defined by a, = a,._; + a,,»,. Thus we have:

1,1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, ...

As with the Pascal triangle situation, many interesting patterns and rela-
tionships can be found in the sequence. For example, given any ten
consecutive terms in this sequence, the sum of this subsequence is equal
to 11 times the 7th term of the subsequence. To illustrate, consider the
subsequence 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. The sum of these
terms is 979. The 7th term of the subsequence is 89, and 979 = 89 x 11.

A less well-known relationship is found with any four consecutive terms.
For example, consider 3, 5, 8, 13. Construct the product of the two outer
terms (i.e., 3 x 13) and twice the product of the two inner terms (i.e., 2 x 5
x 8). Then we have 39 and 80. These two numbers form two parts of a
Pythagorean Triple: 39% + 80% = 89°. It turns out that the third number of
this triple (in this case 89) is also a member of the Fibonacci sequence.
(Readers may like to check this rather surprising result with other
sequences of four consecutive terms).

However, perhaps the best known property of the sequence is the fact
that the ratios of consecutive terms themselves form a sequence that
converges to a limit and this limit is the Golden Ratio ¢. In this case,
correcting the ratio values to 3 decimal places, the limit 1.618 already
appears with the 9th and 10th terms 34 and 55, which is a rapid conver-
gence. (One has to be a little careful here since it is an oscillating sequence.
That is, consecutive terms are alternately above and below the limit of the
sequence).

It is also well-known that many of the patterns and properties arising in
the Fibonacci sequence re-occur whatever two numbers are chosen to start
the sequence. (Do the properties mentioned earlier still hold? This would be
worth investigating.) In particular, the limit of the ratios of consecutive
terms is always ¢. Changing the initial numbers of the sequence is of course
what we have just done with Pascal’s Triangle. So this time let us focus on
the recursive rule itself. That is, instead of generating the sequence by
adding the two previous terms, let us ask what happens if we add the three
previous terms? For simplicity, we start in the same way as the original
Fibonacci sequence, that is, with ones. The new sequence, which we shall
denote by Fibonacci (3), becomes:

1,1,1, 3,5,9, 17, 31, 57, 105, 193, 355, 653, 1201, ...
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The obvious question is: do the ratios of consecutive terms for this
sequence also converge to a limit? In fact, again rounding to 3 decimal
places, in this case we find that it does indeed tend to a limit. This time the
limit is 1.839 which settles down after the 11th and 12th terms 193 and
355; a slightly slower rate of convergence than before.

We can clearly continue this investigation by considering Fibonacci (4)
and Fibonacci (5) sequences and so on. The Fibonacci (4) sequence is:

1,1,1,1, 4,7, 13, 25, 49, 94, 181, 349, 673, 1297, 2500, ...

In this case the limit of the ratios is 1.928 to 3 decimal places and this
settles down after the 14th and 15th terms. Similarly, Fibonacci (5) gives
us:

1,1,1,1,1,5,9, 17, 33, 65, 129, 253, 497, 977, 1921, 3777, ...
This time the limit of ratios is 1.966 to 3 decimal places which is reached,

somewhat surprisingly, after the 13th and 14th terms 497 and 977. We can
tabulate our results so far, denoting Fibonacci (3), etc. as F(3):

Sequence F(2) F(3) F(4) F(5)

Limit of ratios 1.618 1.839 1.928 1.966

It appears as though the sequence of these limits is itself converging to
a limit which we could guess is 2. But what sequence is such that the ratio
of consecutive terms is exactly 2? Of course, this is simply the powers of 2.
(An interesting connection here with the earlier Pascal results?) That is, the
following sequence:

1, 2, 4, 8, 16, 32, 64, ...

How can this sequence emerge as a limiting process of the Fibonacci
sequences that we have defined? In fact, it is clear from the definition of the
sequences that they are all increasing sequences (after the first few terms)
since each new term is defined as the sum of a number of previous terms.
But if each new term is the sum of m previous terms say (m = 2) then obvi-
ously the ratio of consecutive terms must always be less than 2. Now, for
each Fibonacci sequence we have investigated above, we have been
increasing the number of previous terms to be added in the recursive defi-
nition. Let us consider a slight variation of this. Suppose we define a new
sequence such that each new term is the sum of all previous terms in the
sequence. Now we can start the sequence with just the number 1 (or indeed
any number) which will give us, for example:

1,1, 2, 4, 8, 16, 32, ...
or 3, 3,6, 12, 24, 48, ... etc.

and these sequences have exactly the ratio 2 for successive terms (apart
from the first two terms) and are also Fibonacci-type sequences. It is now
intuitively clear that our earlier sequence of limits tends to 2 because
increasing the number of previous terms to be added is taking us closer to
the situation of adding all previous terms.
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Conclusion

These are not “mind-blowing” conclusions but they did have the effect of
convincing my students that the “What if...?” question is powerful, simple
to use, and may yield some interesting results. This was all the more mean-
ingful because these conclusions were new to them, and to me. I have not
the slightest doubt that somewhere among those thousands of search
engine hits precisely these ideas (or something similar) are to be found,
although I have not come across them. It is also important to go back to the
phrase I used earlier, that is “may yield some interesting results,” because
another important element of the true spirit of investigation is that one
really does not know where the investigation will lead, unlike the normal
classroom situation where the students do “know” that it is leading some-
where because the teacher has given them the starting point. If we can
encourage students to come up with their own questions, and therefore
their own starting points for an investigation, we can be fairly confident that
any discoveries they do make will be that much more satisfying and, dare I
say, magical for them.
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