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Structural equation modeling (SEM) refers to a family of statistical techniques that
explores the relationships among a set of variables. Structural equation modeling
provides an extremely versatile method to model very specific hypotheses involving
systems of variables, both measured and unmeasured. Researchers can use SEM to
study patterns of interrelationships among variables, compare different groups to
each other, study change over time, and do many other types of sophisticated analy-
ses. This paper will present an overview of SEM, present an illustration of research
using SEM, and provide suggestions for ways that this powerful technique can be
used to answer a variety of research questions within the field of gifted education.

Introduction: Structural Equation Modeling

Structural equation modeling (SEM) refers to a family of techniques,
including path analysis, confirmatory factor analysis, structural
regression models, autoregressive models, and latent change models
(Raykov & Marcoulides, 2000), that utilizes the analysis of covari-
ances and means to explore the relationships among a set of vari-
ables and to explain maximum variance within a specified model
(Kline, 1998). Structural equation modeling is extremely versatile; it
places very few restrictions on the kinds of models that can be
tested (Hoyle, 1995). Structural equation modeling has been hailed
as “a more comprehensive and flexible approach to research design
and data analysis than any other single statistical model in standard
use by social and behavioral scientists” (Hoyle, p. 15). 

Over the past decade, SEM has become an increasingly popular
data-analytic technique, used by researchers in all fields of educa-
tion and psychology. What was once considered a rather burden-
some and complex technique by nonmethodologically oriented
educational researchers has become a mainstay of many quantita-
tive studies in the field of education. Several Windows-based SEM
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programs, including LISREL, EQS, AMOS, Mx, and M-Plus, com-
pete for the growing market of SEM users. The purpose of this paper
is to introduce researchers and research consumers in the field of
gifted education to SEM and illustrate its power for answering
research questions within our field. 

Advantages of SEM

SEM offers several advantages over traditional data-analytic tech-
niques. It allows researchers to estimate the effects of theoretical or
hypothetical constructs, commonly called “latent variables” (Raykov
& Marcoulides, 2000). In traditional analyses, researchers must con-
fine themselves to estimating effects for measured variables. In SEM,
a number of measured variables can be used to estimate the effects of
a latent variable. The analysis of latent variables is both statistically
and conceptually appealing. With SEM, researchers can include latent
constructs, such as hope, motivation, and creativity, in their analyses.
Because SEM allows researchers to distinguish between observed and
latent variables and to model both types of variables explicitly,
researchers are able to test a wider variety of hypotheses than would
be possible with most traditional statistical techniques (Kline, 1998).
More important, SEM accounts for potential errors of measurement
and allows researchers to account for measurement error explicitly
(Raykov & Marcoulides, 2000). The ability to separate measurement
error or “error variance” from “true variance” is one of the reasons
that SEM provides such powerful analyses. In multiple regression,
measurement error within the predictor variables attenuates the
regression weight from the predictor variable to the dependent vari-
able (Baron & Kenny, 1986; Campbell & Kenny, 1999). Because analy-
ses using SEM use multiple indicators to estimate the effects of latent
variables, they correct for the unreliability within the measured pre-
dictor variables and allow for more accurate estimates of the effects of
the predictor on the criterion.

In addition, structural equation modeling allows researchers to
specify a priori models and to assess the degree to which the data fits
the specified model. SEM provides a comprehensive statistical
approach for testing existing hypotheses about relations among
observed and latent variables (Hoyle, 1995). In this way, SEM forces
the researcher to think critically about the relationships among the
variables of interest and the hypotheses being tested. Further, SEM
allows researchers to test competing theoretical models to deter-
mine which model best reproduces the observed variance/covari-
ance matrix.
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Perhaps the most significant advantage of SEM is that it allows
researchers to model the direct, indirect, and total effects of a sys-
tem of variables. Therefore, SEM allows researchers to test for and
model mediation within their models. A mediator variable is a
“middle man,” an intervening variable that explains the relation-
ship between a predictor variable and a dependent variable (Baron &
Kenny, 1986). An indirect effect refers to the relationship between
two variables that is mediated by one or more intervening variables
(Raykov & Marcoulides, 2000). “If an indirect effect does not receive
proper attention, the relationship between two variables of interest
may not be fully considered.” (p. 7). Because mediational models
allow researchers to treat a single variable as both an independent
variable and a dependent variable, they provide the researcher with
the opportunity to test a variety of complex models. However, the
use of mediational models is not without peril. Measurement error
in the mediator tends to produce an underestimate of the effect of
the mediator and an overestimate of the effect of the independent
variable on the dependent variable when all of the path coefficients
are positive (Baron & Kenny, 1986). Luckily, using latent variable
models to develop mediational models eliminates this problem, as
SEM accounts for the measurement error in the mediator.

Besides using SEM models to examine the relationships of a sys-
tem of variables, they can also be used to model effects across groups
or growth across time. SEM models can be used to compare patterns
of interrelationships across groups of people by using a procedure
called multiple-groups SEM or multisample SEM. SEM models can
be used to analyze means, as well as covariances. For instance, SEM
models are often used to model growth over time. This procedure is
commonly referred to as “growth curve analysis” or “latent curve
analysis” (Duncan, Duncan, Strycker, Li, & Alpert, 1999). In addi-
tion, researchers can also use SEM techniques to model latent
means, a procedure referred to as “mean structure analysis.” In short, 

Although partial correlation, ANOVA [analysis of variance],
and multiple regression analysis can be used to isolate putative
causal variables from other variables, SEM is more flexible and
comprehensive than any of these approaches, providing means
of controlling not only for extraneous or confounding variables
but for measurement error as well. (Hoyle, 1995, p. 10)

Basics of SEM

How easy is it to for a novice user to learn to analyze his or her data
using SEM techniques? A researcher who wants to learn to use SEM
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will have a much easier time mastering the basics than would have
been the case a decade ago. Recently, several good introductory SEM
texts have introduced researchers to the field of SEM (e.g.,
Diamantopoulos & Siguaw, 2000; Kelloway, 1998; Kline, 1998;
Maruyama, 1998; Raykov & Marcoulides, 2000; Schumacker &
Lomax, 1996). Further, SEM has become exponentially more popu-
lar as readily available, user-friendly computer software programs
enable researchers to conduct their own analyses within a Windows
platform. In the early days of SEM, “model fitting programs usually
required users to generate a lot of arcane code for each analysis, a
time-consuming, tedious, and highly error prone process” (Kline,
1998, p. 6). Today, most major SEM programs are becoming increas-
ingly slick and easy to use. The major SEM computer programs,
such as LISREL, EQS, AMOS, and M-Plus, can handle most types of
SEM models. Therefore, once a researcher has mastered the basics of
one computer program, he or she can use that program to model a
seemingly infinite array of different types of models (Maruyama,
1998).

Understanding SEM

The basic building block of any structural equation model is the
variance/covariance matrix. In fact, all of the information needed to
perform a SEM analysis is contained in the covariance matrix.1
Therefore, an analyst can create and analyze a SEM without the raw
data file. When a researcher publishes the covariance or correlation
matrix, other interested researchers should be able to replicate his
or her results using the published covariance or correlation matrix.2
As we delve into what might seem to be a complex barrage of sym-
bols, jargon, and numbers, keep in mind that at the heart of SEM is
the covariance matrix. SEM simply represents a way to use the
covariance matrix to explain complex patterns of interrelationships
among variables.

Path Diagrams

Path diagrams are visual displays of structural equations and are,
perhaps, the most intuitive way to conceptualize the process of
developing and testing a specified model. Most causal or predictive
models can be reconceptualized as a path model. For example,
Figure 1 illustrates a path diagram of a multiple regression model
with three predictors and a dependent variable. The curved lines
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among the three predictor variables symbolize the correlations
among the variables. Straight arrows connect each of the indepen-
dent variables to the dependent variable. These arrows are com-
monly called “paths.” Just as in multiple regression, these paths
represent a measure of the relationship between the predictor vari-
able and the dependent variable after controlling for the other vari-
ables in the model. Typically, the reported value of a path is the
standardized regression coefficient. Notice that all of the variables
in the model are indicated by rectangles. In a path diagram, rectan-
gles indicate observed or measured variables. An observed variable
is one that is actually measured. For example, a student’s score on a
test or a subscale is an observed variable. 

In contrast, latent variables are the hypothetically existing con-
structs of interest in a study. Examples of latent variables include
peace, intelligence, and apathy. Latent variables cannot be directly
measured. Rather, they must be inferred or derived from the rela-
tionships among observed variables that are thought to be measures
of the latent variable. In a path diagram, circles indicate latent vari-
ables. Generally, the value of a latent variable is estimated by using
multiple observed variables as indicators of the latent variable. For
example, if a researcher wants to use creativity as a latent variable
in his or her model, he or she might use several observed variables,
including scores on a divergent-thinking task, self-report measures,
and peer-report measures. Creativity, the latent construct, is esti-

Figure 1. A multiple regression model with three predictor vari-
ables shown as a path model.
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mated by a variety of observed variables, or indicators. The question
of how many observed variables a researcher needs to adequately
estimate a latent variable is a very complex issue. From a technical
point of view, two observed variables might be adequate if there is
more than one latent variable in the model. Using three observed
variables is technically adequate to estimate a latent variable.
However, having four observed variables is better, and having more
“is gravy” (Kenny, 1979, p. 143). From a theoretical point of view,
“constructs can differ widely in the extent to which the domain of
related observable variables is (1) large or small and (2) specifically
or loosely defined” (Nunnally & Bernstein, 1994, p. 85). In general,
the more abstract and loosely defined a construct is, the more indi-
cators will be required to measure adequately the latent variable
(Nunnally & Bernstein).3

Figure 2 illustrates a latent variable model of achievement. Each
of the three predictors—motivation, academic self-perceptions, and
self-regulation—is measured using four observed variables. These

Figure 2. A latent variable structural equation model of academic
achievement.
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observed variables could be four different subscales that each mea-
sure the latent variables. More commonly though, these observed
variables are individual items or small clusters of items (sometimes
referred to as “item parcels”) on the subscale of an instrument. The
three latent variables are being used to predict GPA. In this model,
there are 13 observed variables: 4 variables on each of 3 latent vari-
ables and GPA, an observed variable.

In SEM, a variable is considered to be exogenous or endogenous.
Exogenous variables remain at the outside edge of the model; they
are only predictors of other variables; they are not affected by any
other variables in the model. Exogenous variables may be correlated
with other exogenous variables, but they never have paths (straight
arrowheads) leading into them. Endogenous variables are caused or
predicted by one or more variables in the model. However, endoge-
nous variables can also affect other endogenous variables. In path
analysis, the independent variables are exogenous; the dependent
variable is endogenous. In addition, every endogenous variable in
the model contains an error term, often referred to as a “distur-
bance.” The disturbance or error term represents the sum of all
other causes of the endogenous variable that are not explicitly spec-
ified in the model. The disturbance of a standardized endogenous
variable is equal to the square root of 1 minus the R2 of the endoge-
nous variable. In Figure 2, notice that GPA, which is an endogenous
variable, has a disturbance term. In addition, because each of the
observed variables that is predicted by a latent variable is an endoge-
nous variable, each has an error term or disturbance.

Building a SEM Model

Specification and Identification. A researcher who plans to use SEM
first specifies a hypothesized model (i.e., draws a path diagram). At
this stage, it is also important to determine whether the model is
identified. For a SEM model to be identified, there must be at least as
many elements in the variance/covariance as there are parameters to
be estimated within the model. A parameter is an unknown charac-
teristic of the population that we are trying to estimate in the speci-
fied SEM model. In addition, both the measurement model and the
structural model must be identified in order for the entire latent vari-
able model to be identified. However, having met this necessary con-
dition does not ensure that the specified model is indeed identified.
The issue of identification is complex, and presenting all of the rules
for identification is beyond the scope of this paper. (For a thorough
treatment of identification, see Kenny, Kashy, & Bolger, 1998.) 
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Data Collection. Next the researcher selects measures to test the
hypothesized model and then collects the data. Ideally, a researcher
should specify the model to be tested prior to gathering the data
(Kline, 1998). A word of caution is warranted here. Some researchers
seem to feel that complicated analyses, such as SEM, can help to
overcome shortcomings in the data or design of a study. Though
structural equation models may look impressive, SEM cannot sal-
vage studies that contain badly measured constructs, inappropriate
samples, or faulty designs.

Model Specification. There are two components to a structural
equation model: the measurement model and the structural model.
The measurement model depicts the relationships between the
observed variables (also called “indicators”) and their underlying
latent variables (Kline, 1998). An analysis of a measurement model
is commonly called a “confirmatory factor analysis.” The structural
model depicts the predictive paths and consists of the structural
paths between and among the latent variables and any observed
variables that are not indicators of an underlying variable. The SEM
analyst engages in a two-step modeling process (Kline). Before ana-
lyzing the full structural model, the researcher examines the ade-
quacy of the measurement model by conducting a confirmatory
factor analysis of all of the latent variables in the structural equation
model and evaluates the plausibility of the measurement model. If
the fit of the measurement model is unsatisfactory, the fit of the full
model will also be unsatisfactory. Therefore, any problems in the
measurement model should be addressed before proceeding to the
structural analysis. Next, the researcher analyzes the structural
model, evaluates the model fit, makes any necessary changes to the
model, and evaluates the fit of the revised model (Kline, pp. 49–50).
Sometimes, a researcher may compare the fit of two or more com-
peting models. 

Model Fit. How do we know if the data “fits” the model?
Hypothesis testing in SEM departs from traditional tests of signifi-
cance. In most statistical analyses, researchers test the null hypoth-
esis that there is no relationship among a set of variables or that
there are no statistically significant differences among a set of vari-
ables. Generally speaking, we want to reject the null hypothesis and
conclude that there are statistically significant relationships or dif-
ferences. In SEM, the logic is reversed. We test the hypothesis that
the population covariance of observed variables equals the covari-
ance matrix implied by a particular model.4 Assuming that the dis-
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tributional assumptions (normality, etc.) for the data are satisfied,
one can use a test statistic with a chi-square (χ2) distribution to test
the null hypothesis that the specified model exactly reproduces the
population covariance matrix of observed variables (Bollen & Long,
1993). Therefore, analysts can evaluate exact model fit by compar-
ing the chi-square (χ2) of the specified model to the critical value for
chi-square for its degrees of freedom. However, using this approach
poses several problems. First, χ2 is very sensitive to sample size;
therefore, almost any model with a large sample size will be rejected
if there is even a miniscule amount of data misfit.5 On the other
hand, because of the estimation method used, it is important to
have large sample sizes. Because a researcher wants to accept the
null hypothesis, having large sample sizes works against the
researcher. He or she inevitably must reject the null hypothesis that
the model fits the data. Second, knowing that the model-implied
covariance matrix does not exactly fit the population covariance
matrix does not tell us about the degree to which the model does or
does not fit the data. In scientific inquiry, we generally reward par-
simony and simplicity. Generally, our models are simplifications of
reality. We try to capture the essence of a system without com-
pletely recreating it. Therefore, it should come as no surprise that
model-implied covariance matrices fail to reproduce population
covariance matrices exactly.

Researchers wanted to be able to talk about the degree to which
the model fits the data. Therefore, researchers have developed many
fit indices (i.e., comparative fit index, Tucker Lewis Index, root
mean square error of approximation, etc.) that provide an estimate
of model-data fit (or misfit). These fit indices attempt to correct the
problems that result from judging the fit of a model solely by exam-
ining the chi-square of the model. SEM programs provide many
measures of model fit. 

There are two basic types of fit indices: absolute fit indices and
incremental fit indices. Absolute fit indices evaluate the degree to
which the specified model reproduces the sample data. Some of the
more commonly used absolute fit indices include the root mean
square error of approximation (RMSEA) and the standardized roo
mean square residual (SRMR). The RMSEA is a function of the
degrees of freedom in the model (Browne & Cudeck, 1993), the χ2 of
the model, and the sample size. The RMSEA has become one of the
most popular fit indices because, unlike the χ2, the value of the
RMSEA should not be influenced by the sample size (Raykov &
Marcoulides, 2000). The SRMR represents a standardized summary
measure of the model-implied covariance residuals. Covariance
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residuals are the differences between the observed covariances and
the model-implied covariances (Kline, 1998). “As the average dis-
crepancy between the observed and the predicted covariances
increases, so does the value of the SRMR” (Kline, p. 129). The
RMSEA and the SRMR approach zero as the fit of the model nears
perfection. Hu and Bentler (1999) have suggested that SRMR values
of approximately .08 or below and values of approximately .06 or
below for the RMSEA indicate that there is a relatively good fit
between the hypothesized model and the data. 

Incremental fit indices measure the proportionate amount of
improvement in fit when the specified model is compared with a
nested baseline model (Hu & Bentler, 1998). Some of the most com-
monly used incremental fit indices include the nonnormed fit index
(NNFI), also known as the Tucker Lewis Index (TLI); the compara-
tive fit index (CFI); and the relative noncentrality index (RNI). These
three indices approach 1.00 as the model-data fit improves, and the
TLI can actually be greater than 1.00 when the fit of the data to the
model is close to perfect. Generally speaking, TLI, CFI, and RNI val-
ues at or above .95 indicate that there is a relatively good fit between
the hypothesized model and the data (Hu & Bentler, 1995, 1999).
TLI, CFI, and RNI values below .90 generally indicate that the fit of
the model to the data is less than satisfactory. 

Many factors, such as sample size, model complexity, and the
number of indicators, can affect fit indices differentially (Gribbons
& Hocevar, 1998); therefore, a researcher should examine more than
one measure of fit when evaluating a SEM model. Several previously
popular fit indices, such as the goodness of fit index (GFI) and the
normed fit index (NFI), have fallen out of favor as they have been
shown to be unduly influenced by such factors as the number of
observed variables in the structural equation model (Gerbing &
Anderson, 1993). Because the vast array of fit indices can be over-
whelming, most researchers focus on and report only a few. The
most popular of the fit indices at the present time seem to be the
RMSEA, the SRMR, and the CFI. 

Respecification. If the data do not fit the model, how should the
researcher proceed? Sometimes, a researcher might wish to change cer-
tain aspects of the model, a process called “respecification.” SEM mod-
els can be time consuming. Unlike traditional statistical techniques,
SEM usually requires running and evaluating several models before
adopting a final model. First, the researcher checks to see whether all
of the specified paths are statistically significant. As in multiple regres-
sion, each unstandardized path coefficient is divided by its standard
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error to compute a critical ratio. If the absolute value of this ratio is
greater than or equal to 1.96, the path is generally considered statisti-
cally significant. If the ratio of the unstandardized path coefficient to
its standard error is less than |1.96|, the path is considered nonsignifi-
cant. Generally, nonsignificant paths can be deleted from a model
without affecting the fit or the predictive power of the model. 

Theorists begin by specifying an a priori model based on previous
literature and substantive hypotheses. Because theorists seek the
most parsimonious explanation for a given phenomenon, analysts
delete or trim nonsignificant paths. They can then test the fit of the
new more parsimonious model (with greater degrees of freedom)
against the original model using the χ2 difference test. For the χ2 dif-
ference test, we subtract χ2 of the simpler model (χ2

2) from the χ2 of
the more complex model (χ2

1).6 We then subtract the degrees of free-
dom of the less parsimonious model (df2) from the degrees of free-
dom for the more parsimonious model (df1). We compare this χ2

difference (χ2
1 - χ2

2) to the critical value of χ2 with df1 - df2 degrees of
freedom. If this value is greater than the critical value of χ2 with df1

- df2 degrees of freedom, we conclude that deleting the paths in ques-
tion has significantly worsened the fit of the model. If the value of
χ2

2 - χ2
1 is less than the critical value of χ2 with df1 - df2 degrees of

freedom, then we conclude that deleting the paths has not signifi-
cantly worsened the fit of the model. When deleting paths does not
significantly worsen the fit of the model, we choose the more parsi-
monious model (the one that has fewer paths and more degrees of
freedom) as the better model. 

The χ2 difference test merits further discussion. First, the χ2 dif-
ference test can be used to compare any two hierarchically nested
models. Two models are hierarchical (or nested) models if one
model is a subset of the other. For example, if a path is removed or
added between two variables, the two models are hierarchical (or
nested) models (Kline, 1998). However, if a new variable is added or
removed, the models are not hierarchical models. Second, the χ2 dif-
ference test can only be used to compare hierarchically related mod-
els. It is inappropriate to use the χ2 difference test to compare
nonhierarchical models. Third, because χ2 is affected by sample size,
the χ2 difference test will also be affected by sample size. Therefore,
it will be much easier to find a significant χ2 difference between two
hierarchical models with a large sample than it will be with a small
sample. Therefore, any results should be viewed as a function of the
power of the test, as well as a test of the competing models.

In addition, the SEM output usually includes modification
indices (sometimes called “Lagrange Multiplier tests”). The modifi-
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cation indices suggest which parameters might be added to the
model to improve model fit. It is tempting to use these modification
indices to make changes to improve the fit of the model. Proceed
cautiously! Respecification of SEM models should be guided by the-
ory, not simply by a desire to improve measures of model fit.
Analysts may consider making model modifications that are con-
ceptually consistent with the research hypotheses. Other suggested
model modifications may make no conceptual sense. Sometimes
the modifications suggested by the SEM program are downright
illogical and indefensible. For example, the modification index
might suggest that a measure might cause a latent variable. A good
analyst uses modification indices very cautiously. Because SEM
models are so open to modification and manipulation, SEM allows
for a great deal of artistic license on the part of the analyst.
Structural equation modeling is as much an art as a science. It is this
freedom that makes SEM so powerful and so appealing, but also so
prone to misuse.

When SEM Gives You Inadmissible Results

In addition to examining the parameter estimates, tests of signifi-
cance, and fit indices, it is very important to examine several other
areas of the output to ensure that the program ran correctly. The
variances of the exogenous variables should be positive and statisti-
cally significant. The variances of the error terms and the distur-
bances should also be positive and statistically significant. As in
multiple regression, the standardized path coefficients should be
between –1.00 and +1.00. Further, the standardized error terms and
disturbances should fall in the range of 0.00 to 1.00. Negative error
variances and standardized regression weights above 1 are called
“Heywood cases,” and they indicate the presence of an inadmissi-
ble solution. Heywood cases can be caused by specification errors,
outliers that distort the solution, a combination of small sample
sizes and only one or two indicators per factor, or extremely high or
low population correlations that will result in empirical underiden-
tification (Kline, 1998). When any of these problems occur, the SEM
output cannot be trusted. The analyst should try to find the cause of
the Heywood case, respecify the model to fix the problem, and run
the data again. It is never advisable to interpret output that contains
any Heywood cases or inadmissible solutions.

Another possible problem is that the SEM program will run out
of iterations before it finds a maximum likelihood solution that
minimizes the distance between the observed and model-implied
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covariance matrices. This problem is known as lack of conver-
gence. When this happens, the output should not be trusted. Large
or infinite numbers of iterations can be signs of a problem, such as
an underidentified model, an empirically underidentified model,
bad start values, extreme multicollinearity, a tolerance value
approaching zero, or other specification error (Kline, 1998). Some
computer programs are set for a maximum number of iterations.
Once the program reaches this limit, it produces output based on
the last iteration. Again, do not trust the output. If the program
fails to converge, it is necessary to inspect the output for possible
errors or clues to the reason for the nonconvergence, but analysts
should not interpret output if the computer fails to converge upon
a proper solution.

Assumptions and Requirements of SEM 

Normality. Many of the assumptions of SEM are similar to the
assumptions of multiple linear regression. Namely, SEM techniques
assume that the variables of interest are drawn from a multivariate
normal population (Kaplan, 2000). Maximum likelihood estimation
performs optimally when the data are continuous and normally dis-
tributed (Kaplan). Much has been written on the effects of violating
the assumption of normality. Generally, SEM is fairly robust to
small violations of the normality assumption; however, extreme
nonnormality can cause problems. (For more information about
dealing with nonnormal data, see Curran, West, & Finch, 1996, and
West, Finch, & Curran, 1995.) 

Linearity. As in multiple regression, SEM assumes that the vari-
ables of interest are linearly related to each other. In addition, there
are specialized techniques to examine nonlinear effects using SEM;
however, reviewing these techniques is beyond the scope of this
paper. Interested readers should consult Schumacker and
Marcoulides (1998) for a detailed treatment of interaction and non-
linear effects in structural equation modeling.

Sampling. Maximum likelihood estimation assumes that the data
represent a simple random sample from the population. In reality,
this is rarely the case (Kaplan, 2000). The effects of nonindepen-
dence of observations can bias the results of the analysis. New tech-
niques are becoming available to combine multilevel modeling and
structural equation modeling techniques to use SEM to analyze data
that has been collected using multistage or cluster sampling tech-
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niques (Kaplan). (For more information about multilevel structural
equation modeling, see Heck & Thomas, 2000; Kaplan, 2000; and
Marcoulides & Schumacker, 2001). 

Because SEM uses maximum likelihood estimation7 to minimize
the discrepancy between the observed covariance matrix and the
model-implied covariance matrix, SEM is a large-sample technique.
Although there are no definitive rules for a minimum sample size,
there are several rules of thumb. Generally speaking, under most
circumstances, sample sizes below 100 are considered too small to
use SEM techniques (Kline, 1998, Schumacker & Lomax, 1996).
Schumacker and Lomax’s examination of the published SEM litera-
ture revealed that many SEM articles used sample sizes of 250–500.
Generally speaking, sample sizes of 200 or more are considered suf-
ficient for estimating most types of SEM models, especially if the
variables are normally distributed and obtained from a random sam-
ple of subjects. However, very complex models may require larger
sample sizes. As the ratio of the number of cases to the number of
parameters declines, the estimates generated by SEM become more
unstable (Kline, 1998). Kline recommended having at least 10 cases
for each estimated parameter. 

Range of Values. Because SEM is essentially a correlational tech-
nique, anything that affects the magnitudes of the covariances
among the variables in the model will impact the SEM analysis. For
example, restriction of range in one variable will attenuate the
covariance between that variable and any other variables in the
model. This will result in small path coefficients leading to and
from that variable. Therefore, researchers must exercise caution
when framing research questions. For example, a researcher in the
field of gifted education might wish to study the relationship
between intelligence and certain personality characteristics. Using
any correlational techniques (including SEM) with a sample of stu-
dents with high measured intelligence (say, IQ > 130) is likely to
result in the conclusion that intelligence does not relate to the per-
sonality characteristics of interest simply because there is inade-
quate variability in the predictor variable (IQ). In addition,
researchers should be cautious about using such techniques as mean
substitution as an imputation technique with SEM, as mean substi-
tution will decrease the variability within any variables that have
missing data. If the amount of missing data is substantial, using
mean substitution techniques could lead to erroneous conclusions.
Luckily, some SEM programs (such as AMOS) allow for missing
data.
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Common Mistakes and Misunderstandings in SEM

Correlation Versus Causation

The purpose of path analysis is to determine if the causal inferences
posited by a researcher are consistent with the data (Bollen, 1989).
Therefore, SEM techniques inform us about the degree of model
data fit (or misfit). However, knowing that a specified model is con-
sistent with the data does not prove that the model is “correct.”
There are several reasons that it is inappropriate to view a good-fit-
ting structural equation model as correct or indicative of causality.
First, for every SEM that a researcher specifies, there are other
equivalent models that will result in the sample chi-square and fit
indices (e.g., specifying that X > Y > Z is equivalent to specifying
that Z < Y < X). For complex models, there are often several (if not
dozens!) of functionally equivalent models that the researcher has
not tested. Therefore, the model that is tested provides good fit to
the data; however, many other equivalent models will provide
equally good fit to the data; and, moreover, the possibility even
exists that an untested model will provide even better fit to the data. 

To use correlational techniques to infer that X causes Y, a
researcher must meet three criteria (Kline, 1998). First, X must pre-
cede Y temporally. In other words, if the two variables are measured
at the same time, it is impossible to infer causality from SEM mod-
els. Therefore, it is impossible to infer causality from any cross-sec-
tional SEM models. Second, the direction of the causal relation
must be correctly specified. The measurement of X before Y is nec-
essary but not sufficient to prove a causal relation. For example, if
high academic motivation results in high academic achievement,
but the measures of academic achievement are taken prior to the
measures of motivation, one could erroneously conclude that high
academic achievement causes high academic motivation. In prac-
tice, it is often difficult or impossible to meet criterion 2, as it is
often difficult or impossible to develop theories and gather data in a
way that allows a researcher to know that the direction of the causal
relation is correctly specified. Finally, the relationship between the
causal variable and the criterion variable must not vanish when
external causes, such as common causes of both variables, are par-
tialed out (Kline, 1998). This is often referred to as the “omitted
variable problem.” A researcher may conclude that X causes Y when
in reality, Z, a variable that was not included in the model, causes
both X and Y. For example, a researcher may erroneously conclude
that having high academic self-concept causes high academic
achievement, when in fact, having high academic ability causes
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both high academic self-concept and high academic achievement.
Satisfying these three criteria is extremely difficult. Therefore, the
ability to infer causality using SEM represents the very rare excep-
tion, rather than the rule.

An Example Using SEM

Figure 3 shows a hypothesized SEM model of kindergarten students’
educational experiences. The data for this model came from the
Early Childhood Longitudinal Study–Kindergarten Cohort (ECLS-K),
a federally sponsored longitudinal study of almost 20,000 school
children who were kindergarteners during the 1998–1999 school
year. For this illustration, I randomly chose a subsample of the stu-
dents who were first-time kindergarteners and who were not miss-
ing data on any of the key variables. The sample size for this

Figure 3. Full originally specified structural equation model 
for ECLS-K example.
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analysis was 3,853 cases. Technically, because students were nested
within schools, this type of analysis is best approached using multi-
level modeling or multilevel structural equation modeling tech-
niques. Since this example is being presented to illustrate the basic
components of a structural equation model, we will ignore this
issue. However, remember that, when using nonrandom samples,
nonindependence of data must be carefully considered.

In this model, there are six latent variables. Parents’ education
level is a latent variable that was estimated using two observed vari-
ables: mother’s education level and father’s education level.
Scholastic ability is a latent variable that was estimated using three
observed variables: the child’s scale scores on the reading, math, and
general knowledge tests given at the beginning of the kindergarten
year. The parent/child activities latent variable consists of nine ques-
tions in which parents reported the frequency with which they
engaged in activities with their children, such as reading books, play-
ing games, and singing songs. The teacher perception of academic
skills latent variable was estimated using three observed variables:
the teacher’s rating of the student’s language and literacy skills, the
teacher’s rating of the student’s math skills, and the teacher’s per-
ception of the student’s general knowledge. The teacher perception
of nonacademic skills latent variable was estimated using three
observed variables: the teacher’s rating of the student’s sociability
and extroversion, the teacher’s rating of the student’s self-control,
and the teacher’s rating of the student’s interpersonal skills. The
enjoyment of school latent variable was estimated using three
observed variables. Each parent reported the degree to which his or
her child liked school, looked forward to going to school, and felt
good about school. The model also contained one manifest (observed)
variable: the student’s age at the beginning of kindergarten.

Using the two-step hypothesis procedure, I first estimated the mea-
surement model using EQS 5.7 (Bentler, 1998). The measurement
model specified that each indicator loaded on only one of the 6 latent
variables and allowed the 6 factors to correlate with one another.
Figure 4 illustrates the initial specification of the measurement com-
ponent of the model. The χ2 of the measurement model was 2,184.64
with 215 degrees of freedom. The χ2 was significant, but, given the
large sample size, it would be virtually impossible to obtain a non-
significant χ2. The overall fit of the measurement model was adequate
(NNFI/TLI = .923, CFI = .934; RMSEA = .049; SRMR = .051). 

Next, I estimated the parameters for the entire latent variable model.
Figure 4 illustrates the initial specification of the structural model. The
χ2 of the initial model was 2,435.53 with 238 degrees of freedom. The
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χ2 was significant, but, given the large sample size, it would be virtually
impossible to obtain a nonsignificant χ2. The overall fit of the initial
model was adequate (BBNI/TLI = .924, CFI = .934; RMSEA = .049;
SRMR = .046). However, several of the originally specified paths were
nonsignificant. Therefore, I eliminated these paths from the model and
reestimated the model. The new model had a χ2 of 2,443.53 with 243
degrees of freedom. Because these models are nested, we can compare
them using the χ2 difference test. The χ2 difference between the two
models was 7.7 with 5 degrees of freedom. This suggests that dropping
the five statistically insignificant paths did not significantly worsen the
fit of the model. Furthermore, eliminating paths increases the parsi-
mony of the model. Therefore, the second simpler model is determined
to be the preferred model. Figure 5 illustrates the structural component
of the final model. The fit indices for the final model indicate that it
exhibits adequate fit to the observed data. The NNFI/TLI is .925, the
CFI is .934, the RMSEA is .048, and the SRMR is .046. 

Figure 4. Specifications for measurement model of ECLS-K data.
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Parent’s education level (b = .566) and assessment age (b = .283) are
both positively related to students’ scholastic ability at the beginning
of kindergarten. The path coefficients (standardized regression
weights) in a path diagram are interpreted similarly to the beta weights
in a multiple regression. As a general rule of thumb, path coefficients
in the .10–.20 range indicate a small effect, path coefficients in the
.30–.40 range indicate a medium effect, and path coefficients larger
than .50 indicate a large effect (Kline, 1998). Therefore, after control-
ling for parents’ education level, a child’s age at kindergarten entry
does have a small direct effect on his or her scholastic ability. The path
from parents’ education to scholastic ability is quite large. Therefore,
after controlling for a child’s assessment age, the parents’ level of edu-
cation has a large direct effect on the student’s scholastic ability at the
beginning of kindergarten. In fact, the combination of parent’s educa-
tion level and student’s assessment age explains more than 40% of the
variance in a student’s cognitive ability at the beginning of kinder-
garten. Perhaps surprisingly, after controlling for parents’ education
level and student’s age at kindergarten entry, the parent/child activity
factor is not a significant predictor of the child’s scholastic ability. 

Figure 5. Final structural model of ECLS-K example.

Note. This figure shows the structural model only.
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How does parental education level impact the teacher’s perception
of a student’s academic skills? First, we see that a student’s ability
has a large direct effect on the teacher’s perceptions of the student’s
academic skills. None of the other variables in the model directly
affects teacher’s perceptions of a student’s academic skills. After con-
trolling for a student’s scholastic ability, parental education has no
direct influence on teacher’s perceptions of a student’s academic
skills. However, parental education level does exert an indirect effect
on a teacher’s perceptions of the student’s academic skills. An indi-
rect effect between two variables occurs when no single straight line
or arrow directly connects them, but when the first variable may be
reached through one or more variables via their paths (Schumacker
& Lomax, 1996). Parent education level predicts the child’s scholas-
tic ability, which in turn predicts the teacher’s rating of the child.
The effect of parent’s education on a teacher’s rating is completely
mediated by the scholastic ability variable. We can estimate the indi-
rect effect of parental education on teacher’s perceptions of a stu-
dent’s academic skills by multiplying the two path coefficients: .566
multiplied by .654 equals .37. Therefore, there is a medium-sized
indirect effect of parental education on teacher’s perceptions of a stu-
dent’s academic skills; however, this effect is completely mediated
by the student’s scholastic ability at kindergarten entry. 

Let’s turn to the most complex network of direct and indirect effects:
those for the student enjoyment of school latent variable. Several vari-
ables exert direct and indirect influences on a child’s enjoyment of
school. The direct effect of a student’s scholastic ability on his or her
enjoyment of school is -.134. This suggests that, after controlling for the
other variables in the model, the higher a student’s scholastic ability, the
lower his or her enjoyment of school will be. However, -.134 is a small
effect. In addition, after controlling for the other variables in the model,
the parent/child activities factor is negatively related to student’s enjoy-
ment of school. Therefore, after controlling for the other variables in the
model, the greater the parent/child activity level, the less the parent
reports the child enjoys school. Again, this is a relatively small direct
effect. After controlling for the other variables in the model, teacher’s
ratings of a student’s nonacademic skills is negatively related to the stu-
dent’s enjoyment of school. Again, this is a small direct effect (b = -.143).
Finally, after controlling for the other variables in the model, parents’
education level is positively related to students’ enjoyment of school;
however, this is again a small direct effect (b = .151). 

Several variables in the model exert indirect effects on students’
enjoyment of school. To determine the indirect effects of variables, we
must trace all continuous lines of arrows on the path diagram from any
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exogenous or predictor variables to the enjoyment of school factor,
making sure to follow the direction of the arrows. To compute the
indirect effect through a particular pathway, we take the product of all
of the path coefficients in the series from the predictor variable to the
criterion variable. To compute the total indirect effect of a variable on
another variable, we sum the products from all possible tracings of
indirect effects from the predictor variable to the criterion variable. 

For example, the indirect effect of parents’ education on a stu-
dent’s enjoyment of school can be traced through the scholastic
ability factor (.566 * -.134 = -.076), the parent activities factor (.208
* -.291 = -.060), the parent activities factor to the nonacademic fac-
tor (.208 * .041 * -.143 = -.001), and the scholastic ability factor to
the nonacademic factor (.566 * .236 * -.143 = -.019). Thus, the indi-
rect effect of parents’ education level on a student’s enjoyment of
school is (-.076 + -.060 + -.001 + -.019 = -.156). 

To compute the total effect of a predictor variable on a criterion
variable, we compute the sum of all indirect effects (in this case -.156)
and add the total of the indirect effects to the direct effect of the vari-
able. The direct effect of parent’s education level on student’s enjoy-
ment of school is .151; the indirect effect through all the other
variables in the model is -.156. Therefore, the total effect of parent’s
education level on student’s enjoyment of school is -.005. This value
is very close to 0. Therefore, we can conclude that parent’s education
level really does not influence student’s enjoyment of school after
controlling for all of the other variables in the model. 

It is quite easy to determine the percentage of variance in a given
variable that is explained by the model. The square of the distur-
bance (or error) represents the percentage of unexplained variance in
the model. Therefore, R2 is simply 1 minus the square of the distur-
bance term. (Occasionally, the disturbance is presented as a path
coefficient. In this case, R2 equals 1 minus the disturbance path
coefficient.) The percentage of variance in student’s school enjoy-
ment that is explained by the entire system of variables within the
model is 12.3%. This is equal to 1 - .9372. Fortunately, the output
provided in SEM programs includes the computed direct, indirect,
and total effects and percentage of variance explained by the model
for each of the variables in a given structural equation model.

Research Questions That Can Be Answered With SEM

Clearly, given the versatility and richness of SEM, researchers can
utilize this technique to answer a broad array of research questions
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within the field of gifted education. They can use SEM techniques
to systematically study interrelationships among a variety of fac-
tors. SEM can be used to analyze cross-sectional or longitudinal
studies. SEM can also be used to analyze experimental studies. In
addition, SEM is an extremely powerful technique for analyzing
nonexperimental longitudinal data or for modeling students’ growth
over time. 

In the field of gifted education, many possible mediational mod-
els abound. SEM provides a way to determine the direct, indirect,
and total effects of multiple predictor variables on multiple criterion
variables. In this way, we can begin to paint richer and more com-
plex pictures of the patterns among such variables as creativity,
intelligence, motivation, and achievement. For example, what is the
relationship among creativity, IQ, and scholastic achievement and
adult achievement? It seems reasonable to hypothesize that acade-
mic achievement mediates the relationship between IQ and later
success in life.

In addition, researchers can use SEM to analyze two-step experi-
mental or intervention procedures. For example, a researcher who
studies gifted underachievers might hypothesize that gifted under-
achievers suffer from low self-efficacy and that developing interven-
tions to increase their self-efficacy will lead to increased
achievement. Using ANOVA techniques to determine whether the
intervention leads to increased academic achievement ignores an
important piece of the study. Perhaps the intervention does increase
students’ self-efficacy; however, the increase in self-efficacy does
not translate into increased achievement. Or, perhaps, the opposite
result occurs. Perhaps the intervention increases students’ achieve-
ment, but not their self-efficacy. SEM techniques allow the
researcher to examine the mediational effects of increasing self-effi-
cacy on increasing underachievers’ academic achievement. 

Several specialized SEM techniques further expand the variety of
research questions that can be answered using SEM. For instance,
multisample or multiple-groups SEM analysis involves the specifi-
cation of a theoretical model with more than one sample simulta-
neously. Multiple-groups analysis allows the researcher to compare
the patterns of interrelationships among latent variables across mul-
tiple samples. Researchers can use this approach to analyze experi-
mental, cross-sectional, or longitudinal data (Schumacker & Lomax,
1996). This approach is particularly well-suited for researchers
within the field of gifted education. Often, researchers conduct stud-
ies comparing gifted students to nongifted students on a number of
key variables. Multiple-groups SEM allows researchers to determine
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whether the pattern of interrelationships among those variables are
similar in the gifted and nongifted groups. For example, I recently
examined the relationship between academic self-perceptions and
academic achievement among a convenient sample of gifted high
school students and a convenient sample from a general population
of high school students. I found that, although gifted students exhib-
ited higher mean academic self-perceptions and higher academic
achievement than the general population of high school students,
the relationship between academic self-perceptions and academic
achievement was similar for both groups of students (McCoach &
Siegle, 2003). Traditionally, our field has examined the differences
between gifted and nongifted students in terms of mean differences.
However, exploring the differences in the relationships among key
variables is a fertile and unexamined area for future research. 

Finally, until this point, we have talked only about modeling the
covariances among variables. However, structural equation models
can also include means. A mean-structure analysis includes the
variance/covariance matrix, as well as the means of the observed
variables. Using mean structure analysis allows researchers to
model and test hypotheses about the means of latent variables
(Kline, 1998). These models provide a flexible alternative to tradi-
tional analysis of variance models (Raykov & Marcoulides, 2000). 

Latent change (or latent growth) models are a special class of mean
structure models that allow researchers to model growth and change
over time (Duncan et al., 1999). Using latent change analysis,
researchers can describe the growth patterns of gifted children. In addi-
tion, researchers can compare the growth of gifted, nongifted, or both
groups of children on a variety of factors. Do children who come to
kindergarten reading exhibit faster or slower rates of reading growth
than students who cannot read when they enter kindergarten? Do
gifted children really learn new material in a given subject area at a
faster pace than other children? Do different forms of instruction result
in increased rates of learning for gifted students? These are a few of the
many questions that can be explored using latent change analysis.

Structural equation modeling provides an extremely versatile
method to model very specific hypotheses involving systems of
latent variables. Researchers can use SEM to study patterns of inter-
relationships among variables, to compare different groups to each
other, to model latent means, to study change over time, and to do
many other types of sophisticated analyses. It is my hope that struc-
tural equation modeling techniques will come to play a larger role
in research within the field of gifted education as researchers realize
the power and flexibility this method of analysis offers.
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Endnotes

1A researcher who is conducting a mean structure analysis or a
growth curve analysis would need the means for all of the observed
variables, as well as the variance/covariance matrix. However,
under normal circumstances, the variance/covariance matrix serves
as the sufficient statistic for a SEM analysis.

2Technically, it is considered proper form to analyze a covariance
matrix, but under a variety of conditions analyzing a correlation
matrix will produce the same results, as a correlation matrix is sim-
ply a standardized version of a covariance matrix.

3Of course, they all must be “good” indicators.
4This hypothesis is commonly symbolized as Ho: S=S(q). See

Bollen & Long (1993) for more detailed information about hypothe-
sis testing in SEM.

5To correct for this problem, some researchers divide the χ2 by
the model degrees of freedom. The common rule of thumb is that
this χ2/df ratio should be less than 3 (Kline, 1998). This does not
really solve the problem, as the degrees of freedom are related to
model complexity and size, rather than sample size.

6Ideally, χ2
1 should be nonsignificant.

7There are other estimation methods, but they are beyond the
scope of this paper. For more information about alternative estima-
tion methods, see Kaplan, 2000, or Hoyle, 1995.


