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ABSTRACT

In early years’ (primary grade) classrooms in Australia 
repeated patterns are commonly explored as an early intro-
ductory activity to mathematics. Most young students have 
an extensive knowledge of and exhibit success in copying, 
continuing, creating and transferring patterns into other me-
dia. By contrast, research indicates one of the most difficult 
concepts with which students grapple in their later years of 
elementary school is the notion of ratio. This paper reports 
on a design (teaching) experiment conducted over a four-
lesson period in two classrooms comprising 51 students 
whose average age was 9 years and 6 months. The focus of 
these lessons was using students’ knowledge of repeating 
patterns, an understanding that traditionally remains in the 
precinct of early years, to scaffold the introduction of ratio. 
The theoretical frameworks that underpinned the classroom 
interactions and learning were the socio-constructivist the-
ory of learning, inquiry-based discourse and the simultane-
ous use of multi-representations to build new knowledge. 
The results show that after a short intervention period, re-
peating patterns can act as effective bridges for introduc-
ing the ratio concept. They also show that particular repre-
sentations and teacher actions assisted students to identify 
ratio, recognize equivalence between particular ratios, and 
begin to represent these ideas in abstract notation systems.

INTRODUCTION

In response to the difficulties many adolescent students 
continue to experience with algebraic thinking (e.g., War-
ren, 1996) and their unwillingness to participate in higher 
levels of mathematics (Australian Council for Education 
Research, 1998), recent research has turned to examining 
how young children learn to embed algebraic reasoning in 
arithmetic reasoning. This movement to examining young 
children’s learning of mathematics, in order to understand 
and inform the processes of learning at higher levels of 
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schooling, indicates a shift from the traditional approach 
that views algebraic reasoning as occurring after the devel-
opment of arithmetic reasoning to an approach that views 
algebraic reasoning as occurring in conjunction with arith-
metic reasoning. Carpenter and Levi (2000) argued that 
the artificial separation of arithmetic and algebra “deprives 
children of powerful schemes of thinking in the early grades 
and makes it more difficult to learn algebra in the later 
years” (p. 1). The introduction of the Patterns and Algebra 
strand in the new Queensland Syllabus is a direct response 
to this concern. This is the first time that the state-wide syl-
labus includes a strand focused on combining arithmetic 
and algebraic reasoning as part of the outcomes for Year 
1 through to Year 10 students.�  It contains many changes 
that require teachers to embrace new content and pedagogy 
and to reconceptualise arithmetic as procedures rather than 
products, that is, a refocus on the underlying structure of 
arithmetic rather than arithmetic as a computational tool.

Exploring the Teaching and Learning of	
New Content

This article reports on a design (teaching) experiment 
conducted on one aspect of this strand, namely patterns and 
functions. The participants were 51 Year 5 students (aver-
age age 9 years and 6 months) and their teachers from two 
classes in two middle class State primary schools from two 
inner city suburbs in Brisbane, Australia. The teaching ex-
periments undertaken for this study built on the conjecture-
driven approach of Confrey and Lachance (2000). The con-
jecture consists of two dimensions: mathematical content 
and pedagogy linked to the content. The design aimed to 
produce both theoretical analyses and instructional innova-
tions (Cobb, Yackel, & McClain 2000) with one variation: 
� Compulsory schooling in Australia start in Year 1, when students reach 
5 years of age and conclude with Year 10, when students are typically 15 
years of age.  Years 11 and 12 are not compulsory and are referred to as 
college. Those who attend universities are “university” students, not col-
lege students as is the case in other countries, such as the US.
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one of the researchers acted as teacher (teacher/researcher), 
similar to Carraher, Schliemann and Brizuela (2001). The 
teacher/researcher entered the classroom at pertinent times 
throughout the school year to conduct small teaching epi-
sodes focusing on new content knowledge, with the aim 
of ascertaining the types of concrete materials, teacher ac-
tions and classroom conversations that promoted engage-
ment. During these episodes the regular classroom teacher 
and the second researcher acted as participant observers. 
In this type of research, instructional design and research 
are interdependent (Cobb, Dean & Zhao, 2005). The de-
sign involves attempting to support the development of 
students’ learning while at the same time investigating the 
processes and actions that assist the learning. Thus a hy-
pothetical learning trajectory is postulated and conjec-
tures are formulated about envisaged learning processes 
and specific means that might support these processes.

THE FOCUS QUESTIONS

The specific design (teaching) experiment that is exam-
ined in this article occurred over a four-lesson sequence. In 
line with this approach, during and in between each lesson, 
hypotheses were conceived ‘on the fly’ (Steffe & Thompson, 
2000) and modifications in the design were responsive to ob-
served actions and understandings of the teacher/researcher 
and the students. For example, although instructional tasks 
were generated prior to the commencement of each lesson, 
during the lessons some tasks were modified according to 
the classroom discourse and interactions, with new repre-
sentations being introduced in order to challenge students’ 
thinking and encourage them to justify their understandings. 

The research activity and the tasks were closely 
aligned with one giving direction to the other, an evo-
lutionary process. The tasks were intended to assist stu-
dents in reconceptualizing repeating patterns as represen-
tations of ratios and equivalent ratios. We identified four 
interdependent classroom lessons in the design (teaching) 
experiment (Schoenfeld, 2006) that (a) explored repeat-
ing patterns to expose their mathematical structure, and 
(b) used this structure to explore how teachers supported 
the development of early understandings of the notion of 
ratio, that is, how they attempted to bridge the transition 
from the known to the novel. The particular questions that 
we attempted to address in this research episode were:

 How can repeating patterns act as a bridge to the ratio 
concept?
What teacher actions assist in making these connec-
tions?
What roles do external representations play in scaffold-

1.

2.

3.

ing to the ratio concept?

By examining classroom interactions involved in 
teaching and learning mathematical patterns and func-
tions, we demonstrate how the merging of arithmeti-
cal and mathematical thinking can support and constrain 
student learning of ratio and proportional reasoning. 

Design of the Experiment and Theoretical 
Framework for Analysis

In the classroom episode examined in this study, stu-
dents were given geometric tiles in order to construct re-
peating patterns. Duval (2002) provided the theoretical per-
spective we used to examine how external representations 
assist elementary students to negotiate meaning about visual 
patterns. Duval (2002) categorized mathematical knowledge 
as consisting of four registers (1) natural language (multi-
functional) (2) tables/ figures/ diagrams (multi-functional), 
(3) notation systems/algebraic symbols (mono-function-
al), and (4) graphical representations (mono-functional). 
Mono-functional registers are characterized by processes 
that are algorithmic. In most instances, Duval argues, math-
ematical comprehension results from the coordination of 
at least two of these registers. Duval (2002) believes that 
such coordination of registers does not come naturally. 

He further classifies mathematical transformation as 
being characterized as staying within one register (e.g., car-
rying out calculations while remaining strictly in the one no-
tation system) or changing the register without changing the 
objects being used (e.g., passing from natural language of a 
relationship to using letters to represent it). These are respec-
tively referred to as treatments and conversions. Duval sug-
gests that conversions are the ‘real’ mathematical activity 
as they lead to the mechanisms underlying understanding. It 
is also the more difficult of the two and hence is commonly 
avoided by many teachers. Thus, the requirements for learn-
ing mathematics involve comparing similar representations 
within the same register, converting representations from 
one register to another, and understanding the mathematical 
processing that is performed in each register (Duval, 1999). 

Within the longitudinal study, a part of which is an-
alyzed in this article, teaching tasks focus on conversions 
between registers and domains (Duval, 1999) and linking, 
integrating and moving between representations to show 
mechanisms underlying understanding (particularly in 
terms of visual, table and symbolic generalizations of re-
peating patterns as ratios). Central to this approach and Du-
val’s definition of mathematical reasoning and classroom 
interaction were the socio-constructivist theory of learning, 
inquiry based discourse and the simultaneous use of multi-
representations to build new knowledge. Throughout the 
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design (teaching) experiment the science of semiotics (e.g., 
Peirce, 1960; Radford, 2001; Saenz-Ludlow, 2001; Warren, 
2003) reminded us that social discourse (interpretation) of 
differing representations (signs) assist in reaching an under-
standing of the ratio concept (the object). Neither the cogni-
tive domain of the individual nor the social interaction is 
primary. Learning is an evolving process moving beyond 
particular signs to more and more complex representations, 
each giving deeper understanding to the object itself. In the 
teaching experiment reported here, students were encour-
aged to share their ideas in an investigative climate and ex-
plain these using appropriate representations and contexts. 

METHODS

All lessons were videotaped using two video cameras, 
one on the teacher/researcher and one on the students, par-
ticularly focussing on students who actively participated 
in the discussion, thus capturing both teacher-student and 
student-student dialogical interactions. Both the teacher 
and teacher/researcher continually endeavoured to view 
students’ responses in terms of strategies and sign choice 
from their own perspectives. Consequently the teacher 
had to interpret simultaneously her own mathematical ac-
tions and those of the students, with an understanding 
that this assisted in maintaining a meaningful dialogue.  

The basis of rigour in participant observation is “the 
careful and conscious linking of the social process of en-
gagement in the field with the technical aspects of data col-
lection and decisions which that linking involves” (Ball, 
1997, p. 311). Thus both observers (the second researcher 
and regular classroom teacher) acknowledged the interplay 
between them as classroom participants and their role in the 
research process. At the completion of the teaching phase, 
the researcher and teacher reflected on their field notes, en-
deavouring to minimise the distortions inherent in this form 
of data collection, and arrive at some common perspective 
of the instruction that occurred and the thinking exhibited 
by the students participating in the classroom discussions. 

The videotapes were transcribed and worksheets col-
lected. The videos and participant observation scripts served 
to provide insights to the learning of the community and to 
identify specific actions, specific use of representations and 
specific conversations that supported this learning. The work-
sheets assisted in ascertaining how the individual student was 
progressing along the learning trajectory proposed for the 
whole community of learners. Thus the data was two tiered, 
the first tier relating to the classroom learning and the second 
tier focussing on the individual students within this classroom. 

Five main dimensions were developed across the four 
lessons: (1) introducing language and notations to describe 

repeating patterns, (2) separating repeating patterns into 
their repeating components and discussing the number of 
different colored tiles in different number of repeats, (3) re-
cording this information in tables of values and from the 
tables of values generalizing relationships for repeating 
patterns, (4) introducing ratio as the comparison between 
the components of repeating patterns, and (5) creating re-
peating patterns for various ratios and discussing the no-
tion of equivalent ratios. The teaching episodes occurred 
over a four lesson sequence, with each lesson of approxi-
mately one hour’s duration. Each lesson predominantly 
focused on one of the above dimensions per lesson. The 
language chosen to represent repeating patterns was re-
peat, term, repeating part, number of repeats, component, 
ratio and equivalence. Some typical activities conducted 
in the teaching phase are illustrated in Figures 1 and 2.

The first set of activities focused on physically re-
configuring repeating patterns to represent the concept of 
a ratio and recording this data in a table of values. The ac-
tivities delineated within the lesson sequence proceeded 
from type (a) activities to type (d) activities (Figure 1). 

The second set of activities were considered to be 
higher order thinking tasks, namely generalizing the pat-
terns in the tables of values, creating repeating patterns when 
given the ratio of its components, and exploring the notion 
of equivalent ratios.The sequencing of activities proceed-
ed from type (a) activities to type (c) activities (Figure 2).

Processes were established to try to ensure that the 
worksheets were truly representative of student’s own 
thinking. First, students were not permitted to use eras-
ers at any time throughout the lessons. Instead they were 
asked to ‘cross out’ what they had written if they wished to 
change their responses. This in itself required some discus-
sion about how we were interested in their thinking rather 
than whether the answer was correct or not. This approach 
was at odds with the type of activity that commonly occurs 
within most Queensland mathematics classrooms, where 
student responses are either ticked as correct or incorrect 
and their ability to do mathematics is gauged on how many 
correct responses they were given. These students, how-
ever, had been working with us for a two-year period and 
had developed a response to our entry to their classrooms 
-- they automatically remove their erasers. This approach 
was also important for encouraging them to take risks 
and openly posture explanations about the activities. Sec-
ond, students were not permitted to have a pencil in hand 
while classroom discussion occurred. Third, all worksheets 
were collected at the end of each discussion phase of the 
lessons. The responses of the worksheets collected dur-
ing the four lessons were also analyzed. In this instance, 
responses were either marked correct or incorrect. In the 
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case where multiple responses were possible, grounded 
methods were used to identify categories of responses.

The videos were viewed by the researcher and the re-
search assistants who were present during the teaching phases. 
This served as a member check on all stages of the analysis. 
From each video, significant episodes were selected. These 
episodes exemplified key points during the teaching phase 
and exhibited classroom dialogue that evidenced students’ 
understanding of the stages of the lessons. Thus, the focus 
in the first stage of the analysis was on student learning and 
in particular on the students’ responses to questions that en-
couraged them to explain and justify their answers and their 
interpretations of the signs (e.g., How? Why? What pattern 
can you see? Who agrees/disagrees?). The videos were re-
analyzed to identify significant teacher actions that were be-
lieved to support this learning. The focus of this second stage 
was to identify questions, actions, or particular instruction 
that encouraged students to reinterpret the representations 
with the aim of supporting a deeper understanding of the 
ratio concept. While the transcripts provided the dialogue, 
the videos provided examples of the interactions between 
the dialogue, materials and gestures. The field notes served 
as a point of triangulation. The episodes and field notes were 

combined into rich descriptions of positive and negative re-
lationships between the teaching and learning. The findings 
were used to develop hypotheses concerning effective teach-
ing, including effective activities and purposeful questions.

Results

The results are organized chronologically exempli-
fying significant episodes that occurred across the four 
lessons. Across the analyses, we discuss how the inter-
actions within the episodes contribute to answering the 
three questions posed at the beginning of the article. 

In the first lesson, students were asked initially to cre-
ate a repeating pattern using their tiles and matchsticks, and 
then to physically separate the repeating pattern into its re-
peating parts. Under each part, they were to place the words 
1st, 2nd, 3rd and so on. They were then asked to rearrange 
their repeats so that the same elements in each repeat were 
grouped together and questions such as: How many blues 
in 1 repeat, 2 repeats, 10 repeats, 20 repeats? How many 
yellows? How many matchsticks? were discussed. The data 
analysis indicated that students had a good understanding of 
what repeating patterns were. They could copy and contin-

Figure 1

Activities that transform the repeating patterns to ratios.

Use tiles to create the repeating pattern 
 

Separate the pattern into components (repeats) 
 

Compare different number of repeats			 

		   

Record your data in a table of values

     No of Repeats     No of            No of             Total Number      Ratio of      to  	
				  

a)

b)

c)

d)

Figure 2

Higher order thinking activities.

Generalizing patterns in the table				  
					      		   
No of Repeats     No of         No of            Total Number     Ratio of      to 	
								      
						       23 to 46	
				             240		   
       ? 

Creating repeating patterns from ratios			 
Using the tiles    ,    ,  and      , create the repeating 
pattern.						    
Ratio of     to      is 2 to 3 and ratio of    to      is 2 
to 2 

Equivalent ratios 
Suppose I had the ratios of yellow to blue tiles of 2:4 
and 4:8 are they the same ratios or are they different?  
How are they the same? How are they different? 

 
 

 

a)

b)

c)
   

 
    

1 repeat
2 repeats
3 repeats
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ue repeating patterns, break the pattern into repeats and talk 
about the patterns that they saw across the repeats including 
relating the elements in each repeat to the number of repeats.

The focus of the second lesson was to introduce the 
table of values representation to assist in summarizing 
the data for the repeating pattern (see Figure 1, d). It was 
conjectured that the table of values would support con-
versations about the general structure of the pattern. For 
most students, filling in the tables of values was very me-
chanical. In many cases after they had completed the first 
couple of rows in the table, they abandoned the physi-
cal materials and counting the number of tiles, and simply 
completed the table by continuing counting patterns that 
appeared in each column. For example, if one repeat had 2 
blue tiles, then 2 repeats had 4, and 3 repeats had 6. Thus, 
the pattern for the blue tiles was  2, 4, 6, 8, 10, and so on. 

This strategy, while assisting students to quickly com-
plete the table initially impeded the teacher/researcher’s 
conversations with the students about the relationship be-
tween different elements of the repeating pattern, that is, 
relationships between the columns in the table. Specific lan-
guage and actions were introduced to assist students to fo-
cus their attention on relating the columns. The relationships 
that they could see in the table of values were classified as 
‘down’ rules or ‘across’ rules. Examples of down rules of-
fered by the students were: the number of repeats goes up by 
1, the number of yellows is going up by 3, the total number 
increases by 4. These rules focus on one data set, the data 
in a particular column and finding the relationship within 
this set. Examples of across rules were: there are 2 times as 
many yellows as blues; the number of yellows is three times 
the number of repeats. These rules focus on examining two 
data sets and finding the relationship between the two sets. 

The students exhibited great difficulty in identifying 
across rules and even when they did, their explanations tend-
ed to focus on one line of the data rather than the patterns 
that existed across all lines of data. For example, Matthew 
commented, “The number of repeats and number of blues and 
total numbers are all multiples of 5,” referring to the row 5, 
5, 10 and 15, instead of commenting on the more general rela-
tionship that the number of repeats is the same as the number 
of blue tiles and so on. They also exhibited some difficulty in 
verbally expressing the generalizations that they saw. Specific 
questions and the introduction of large numbers appeared to 
assist the students in refining the descriptions that they of-
fered. The following transcript provides insights into the types 
of conversations that occurred in this phase of the lesson. 

T: 	 If you were going to give me an instruction to make 
the pattern what would you say?

C1: 	 You multiply the number by 4.

T: 	 You multiply the number of?
C1: 	 I am not sure.
T: 	 Tell me, what have I got to do and I will try and act it 

out to see if it works.
C1: 	 You would times the number of 3’s, so the yellows 

you would 3 times.
T: 	 If I said I’ve got 363 repeats how would I work out 

the number of yellows?
C: 	 You would times 363 x 3.
T: 	 And what’s 363?  What’s another name for 363?
C2:	 The number of repeats.
C1:	 You times the number of repeats by 3.  
C3:	 Take the number of repeats and multiply it by 3 and 

you get the number of yellow squares.
C4:	 Yeah um 1 times 3 is 3, 2 x 3 is 6, 3 x 3 is 9, 4 x 3 is 

12. 

At the conclusions of extensive conversations about 
different repeating patterns and the relationships between the 
columns in the table of values, the conversations moved on to 
expressing these relationships in both language and symbols. 

For the repeating pattern
 

T:	 Suppose I had an unknown number of repeats. How 
would I work it out?

C5: 	You add this unknown [the number of blue tile] and 
that unknown together and this unknown equals 
unknown times 3 [the number of yellow tiles]. So un-
known plus unknown x 3 [the total number of tiles]. 

T: 	 Unknown but what symbol did we use, we used one 
didn’t we?  Yes?

C6: 	 A question mark
T: 	 Can you write yours up because it is a little bit different?  
C5: 	 Well that one, there’s one blue and three yellow so its 

(child writes on board): 1 x ? + 3 x ?

The task that the students were asked to complete at the 
conclusion of this phase of the teaching required them to cre-
ate the pattern  for 5 repeats and then complete the 
table. Students were asked to complete the table consisting of 
5 columns, namely: (1) number of repeats, (2) number of  , 
(3) number of    , (4) number of    , and (5) total number 
of tiles for 1, 2, 3, 4, 5, 12, 27, 88 and an unknown number of 
repeats represented as  ? . The responses fell into four broad 
categories, created to represent differing levels of thinking. 

Category 1 	 Incorrect pattern

This category consisted of responses where stu-
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dents only completed the first three rows of the table but 
their responses in the first three rows were incorrect. 

Category 2 	 Small countable number of repeats

This category consisted of responses where stu-
dents correctly completed the pattern for the repeats 
1, 2, 3, 4, 5, 12. Classroom observations indicated 
that these students tended to focus on single data sets 
(the columns of values) and identify patterns with-
in these sets (e.g., the number of    is 2, 4, 6, 8, 10, 24).

Category 3	 Large uncountable number of repeats

This category consisted of responses where students 
correctly completed the pattern up to and including 88 repeats. 
These responses were considered different from Category 2 
responses. From the classroom observations it was conjec-
tured that in order to arrive at a correct answer for 88 repeats 
students had to identify the relationship between the columns. 

Category 4	 Unknown number of repeats. 

This category consisted of responses where students 
not only correctly completed the table of values for the given 
steps but also expressed the relationship between the number 
of repeats and the number of tiles as an abstract expression. 
Figure 3 presents some typical responses for this category.

By the completion of Lesson 2 three quarters of the 
students could create the generalization for large uncount-
able numbers of repeats. Fourteen of these students could 
also write the relationship between the columns as a series 
of abstract expressions representing the unknown as ? .

Lesson 3 began with a discussion on the concept of frac-
tions and representing the relationship between the columns 
as fractions. Students were encouraged to create one repeat 
of the repeating pattern and use gestures, such as, placing 
their hand over the pattern or running the finger around the 
edge of the pattern to identify the whole. The conversations 

then turned to a discussion about the parts in the repeat: How 
many parts in the whole? What is each part called? Are they 
equal? Then, questions turned to naming the fraction that 
each component represented. The next phase consisted of 
examining two repeats and reiterating the above dialogue. 
The students were then directed to record the fractions in 
a table of values. Students struggled with this concept. It 
is conjectured from the field notes and analysis of the vid-
eos that this was due to (a) difficulties in distinguishing the 
changing size of the whole as the number of repeats increased 
(e.g.,  for the pattern byyybyyybyyybyyy the whole for 1st 
repeat consists of four tiles but for 2 repeats the whole is 
eight tiles) (b) the lack of specific fraction language used to 
identify fractions, for example, many struggled with fourths, 
eighths, sixteenths and then thirty-seconds, and (c) the rep-
resentation of the fraction using the set model, a represen-
tation that past research has indicated is the most difficult 
representation of the fraction concept. As was evidenced in 
Lesson 4, this lesson served to initiate a focus for students’ 
attention on repeats as consisting of parts and wholes. 

In lesson 4 the concept of the ratio was introduced. 
The lesson began with a discussion about what ratio was 
and continued to the utilization of the ratio to represent 
the relationship between the number of elements gener-
ated for a differing number of repeats. The activities in 
this lesson were similar to lesson 2, but in this instance the 
table of values was extended to include columns where 
students recorded the relationships between the differ-
ent parts of the repeating pattern as ratios (see Figure 1d). 
The table of values on an accompanying worksheet mir-
rored this format. Table 1 presents a summary of the re-
sponses to Question 1 and Question 2 on the worksheet. 
A correct response indicates that the student correctly re-
corded the data for up to 5 repeats in the table of values, 
including the ratios between the elements of the repeats. 

Overall, most students experienced little difficulty with 
the concept of a ratio and successfully related this concept 

Figure 3

Expressing the generalization for an unknown number of 
repeats. 

Table 1

Frequency of correct responses for 5 repeats 
of each pattern.

Task Correct Incorrect
Record your data in the table of values.

1(a)   1(b) 46 (90%) 5 (10%)

2(a)   2(b) 33 (65%)	 18 (35%)
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to their repeating patterns. They certainly found this lesson 
much easier than lesson 3 where the focus was on using frac-
tions to discuss the relationship between the elements. We 
conjectured that this was due to: (a) comparisons between 
parts are simpler than comparisons between wholes and 
parts, and (b) the simplistic language used to express these 
comparisons. Ratio language closely mirrors the language 
used to compare numbers. For example, the ratio 8 to 32 is 
simply read as eight to thirty-two (cardinal language) where-
as 8/32 is eight thirty-seconds (ordinal language), language 
with which students experienced difficulty in Lesson 3. The 
one difficulty that they experienced was in understanding 
that the order in which we say the ratio is the order that 
the comparison occurs, however this appeared initially and 
predominantly only when the concept was first introduced. 

The second phase in the lesson required the students 
to create repeating patterns for different ratios. Students 
found this phase to be more difficult. Thirty three stu-
dents correctly created the ratio for    white to    black 
is 6:2. The results from their responses suggested that as 
the complexity of the task increased (e.g., ratios involving 
three different colored tiles or the inclusion of distracters 
in the task), the number of correct responses decreased. 

Finally, students were challenged to compare equiva-
lent ratios and discuss whether they believed they were the 
same or different. A typical question was:   Suppose  I  had 
the ratios of yellow to blue tiles of 2:4 and 4:8; are they the 
same ratios or are they different? Students modeled these 
two ratios with yellow and blue tiles.

They were asked to indicate by a show of hands 
if they thought they were the same or different. Most 
thought they were different as one had more tiles than 
the other, indicating that they were focusing on the com-
paring the total number of tiles rather than comparing the 
number of blue tiles for each yellow tile for each ratio. 

To further students’ understanding of ratio concepts, 
we introduced different conditions in which ratios were 
potentially useful.  Two jugs were drawn and each ratio 
was placed in each jug. The students were then asked: If 
the ratio of cordial to water in jug 1 is 2:4 and the ratio 
of cordial (fruit juice concentrate) to water in jug 2 was 
4:8, which jug has the stronger cordial. Many students 
thought that they were the same strengths. A typical re-
sponse from students who thought they were different was: 
T: 	 What makes you think that this is different? Is it 

because there is more cordial?  
Sarah: 	 No, because of more water. It is more watery.
T: 	 What’s your favorite drink? What do you like 

drinking?
Sarah: 	 Lemonade.
T: 	 What if I had two cans of lemonade and mixed 

them together, would it be stronger?
Jill: 	 Same.
T: 	 Would it?  Why?
Sarah: 	 Um... because it’s the same thing.
T: 	 Yes, but - Do you think it would be stronger, 

would it? Who thinks it would be stronger? If you 
had 2 cans of lemonade into a jug, would it be 
stronger?

Sarah: 	 But there would be 2!
T: 	 Does that make it stronger?
Jill:	 It would make it more. 

These students were then asked to explain to the 
class why they thought they were the same. John’s ex-
planation exemplified one possible solution. John drew 
three jugs on the board, 2 small and 1 large (Figure 
4). In each of the 2 small jugs he placed 2 yellow tiles 
and 4 blue tiles and said, pointing to the 2 small jugs:

John:	 The cordial in these jugs is the same strength. If we 
take 2 of these small jugs and pour them into the 
large jug we have 4 yellow and 8 blue, but it isn’t 
stronger it is the same because it was the same in 
the smaller jugs. 

Figure 4

 John’s proof that 2 to 4 is the same ratio as 4 to 8.
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By contrast, Amy simply took the tiles in each jug 

and re-arranged them so that each yellow tile was ‘at-
tached’ to 2 blue tiles. An excerpt  of her explanation was:

Amy:	 For every yellow tile there are 2 blue tiles so it must 
be the same. If it was stronger there would be more 
than one yellow tile for every 2 blue tiles in the 
larger jug. 

Cam utilized the concept of ‘balance’ to justify that
the ratios were the same.
Cam: 	 It’s just the same because it balances it out because 

if there were 4 on these ones it would be balanced 
out [pointing to the tiles in the small jugs].  If there 
were still only 4 blues and the yellows have gone up 
to say 10 - so it wouldn’t balance out.  So what you 
have to make sure that what you are doing all stays 
the same.

When comparing 2:4 and 1:2 Emily rearranged the
tiles on the board as shown in Figure 5.

Her comment was: “They now look the same, they 
are the same ratio. They are all the same ratio. It’s pretty 
much what we were doing yesterday.  Now we’ve add two 
together (pointing to the first two repeats). It’s become a 
whole. It is just a bigger amount, but it is still a whole.” 
While it is possible to have a discussion about equivalent ra-
tios from the table of values, we are suggesting that the jus-
tification phase involves the use of visual materials, as it is 
in the reformulation of these materials that meaning started 
to occur. Thus, the process of constructing understanding in 
the classroom setting involved the manipulation of concrete 
materials in a real life context. Finally returning to Sarah:

T: 		  You convinced or not?  (asking Sarah)
Sarah: 	 I am convinced with the cordial, but lemonade I am 

not.

Discussion and Conclusions

Three areas of findings were identified, each relat-
ing to one of the questions posed for this study.  The first 
focuses on the role of repeating patterns in bridging be-
tween arithmetic reasoning and algebraic reasoning, the 
second on the role of the teacher in supporting such bridg-
es, and the third on the role of representations in learning 
to reason algebraically. Finally, the role and value of the 
methodology, design (teaching) experiment, is discussed. 

Repeating patterns as a bridge to introducing the ratio 
concept

The results suggest that repeating patterns can act as 
effective bridges for introducing the ratio concept to young 

students. These students found it easier to discuss the con-
cept of a ratio than they did the concept of a fraction. Past 
research suggests that this occurs because ratio involves 
a comparison between parts whereas fractions involve a 
comparison between parts and wholes, a comparison many 
students find more difficult (e.g., Shwartz and Moore, 
1998). The results from this study add to this research, 
providing evidence that language also plays an important 
role. The language used for describing ratio more closely 
mirrors the language used for numbers (i.e., cardinal lan-
guage rather than ordinal language), and students found it 
easier to articulate ratio relationships than to give the frac-
tion name for different numbers of repeats. Thus, in learn-
ing fractions, they are not only struggling with identify-
ing the whole but also with using complex language such 
as eight thirty-seconds compared to eight to thirty-two. 

Many young adolescents in the Queensland context 
find the concepts of ratio and proportion difficult. One must 
ask: Is this because its introduction occurs after the intro-
duction of fractions? Does the complexity of the fraction 
concept and the difficulties they experience impact the later 
introduction of the ratio concept? The results of this research 
indicate that very productive conversations about ratio and 
proportion can occur earlier than suggested by the current 
syllabus, which mandates that the concept should only begin 
to be introduced to students age 13 years. In addition, as evi-
denced by the conversations presented here, the concept of a 
ratio also encourages students to (re)visit their understand-
ing of multiplication and division. Thus its earlier introduc-
tion could also provide realistic contexts and empirical prob-
lems to situate these discussions (Lo & Watanabe, 1997). 

Teacher actions that assisted in making the 
connections

Particular teacher actions also helped to forge the re-
lationship between repeating patterns and the concept of a 
ratio.Two categories of teacher actions were identified in 
this study: breaking into parts (a physical action) and us-
ing tables of value (a graphic organizer) for recording data.  
Both  actions utilized special language and  discourse. 

Breaking into repeats

Students initially experienced difficulty in breaking 
the repeating pattern into its discrete repeats. The teach-
er’s emphasis of breaking patterns into parts not only al-
lowed students to identify the repeats, but also to begin 
to discuss the structure of one repeat, two repeats and so 
on, and the similarities and differences between these dif-
fering repeats. This involved the development of common 
class words (e.g., ‘repeating part’) with which to describe 
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what was happening. The students were also encouraged to 
rearrange the elements in the repeats so that the same el-
ements were clustered together. The introduction of cards 
to place under the differing number of repeats also enabled 
students to explicitly see the data that was under consider-
ation in ensuing conversations, namely, the number of re-
peats and the number of different elements in these repeats. 

Introduction of the table of values for recording data 

This representation was introduced to assist students 
to summarize their data for differing numbers of repeats. 
Tables of values have long been recognized for their role 
in assisting students’ understanding of mathematics (e.g., 
Warren, 1996). This research suggests that specific strate-
gies need to be incorporated in the discussion to ensure that 
this understanding is maximized. The first strategy entails 
the introduction of explicit categories for differentiating 
generalizations identified in the table of values. As indicated 
in the classroom conversation, the table of values assisted 
many students in searching for generalizations between 
data sets. Initially, students appeared to search for patterns 
in only one element of the repeats (i.e., finding generaliza-
tions in one of the columns); for example, they described 
how the number of yellow tiles changed by 2 as the number 
of repeats increased. Specific strategies assisted in catego-
rizing generalizations as either searching for generalizations 
in one data set (down rules) or searching for generalizations 
by linking two data sets (across rules), thus assisting stu-
dents to change their thinking from single variation think-
ing to co-variation thinking, a richer form of understand-
ing. These strategies were enabled by the introduction of 
terms ‘down’ and ‘across’ (e.g., “that is a down pattern”).

The second strategy involved generalizing from a small 
number of repeats to a larger number of repeats, thus making 
it almost impossible to pattern down the table of values. For 
example, if there are 88 repeats, how many yellow tiles are 
there? How many blue tiles are there? The third strategy en-

tailed acting out students’ verbal descriptions of the gener-
alizations that they identified. This assisted in ensuring that 
these descriptions were very precise and directly related to 
the data set under scrutiny. These strategies, while all being 
situated in Duval’s (2002) mono-functional register, signifi-
cantly contributed to the conversion from mono-functional 
to multi-functional register; that is, they both supported the 
discussion about generalizations in one register and scaffold-
ed the conversion of these discussions to algebraic systems. 

The development of the discourse around jugs and 
the language of ‘stronger’ and ‘weaker’ cordial were 
important to the development of equivalent ratio. Stu-
dent, John, used this discourse explicitly in his argument 
in support of equivalence. As well, the development of 
ratio was assisted by the continual use of inquiry dis-
courses (e.g., asking students to defend their positions). 

The Role of Representations

External representations like the use of tiles and the 
value table played differing roles in assisting students to 
reach an understanding of the ratio concept. Summariz-
ing the data in tables of values assisted students in identi-
fying the relationships between the various data sets (the 
number of repeats and the number of tiles in each repeat), 
whereas, the rearrangements of the physical tiles repre-
senting related ratios (e.g., 2:4, and 6:12) assisted students 
in identifying that these ratios were equivalent. Even the 
fact that the tiles were magnetic and flexible assisted stu-
dent learning (e.g., Emily’s demonstration of equivalence 
was assisted because the tiles could be partially placed on 
top of other tiles and still hold to the steel whiteboard). 

We argue that it was in the synergetic interplay 
amongst a variety of representations that deep understand-
ing began to occur. When the table of values was introduced, 
it assisted students in summarizing their data and supported 
them in searching for generalizations within the data set. It 
also resulted in the translation of visual representations to 

Figure 5

Emily’s explanation of equivalent ratio.
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number representations and hence students began to operate 
in a number world. This certainly assisted them in search-
ing for numeric patterns and generating a variety of ratios 
for differing numbers of repeats. However when it came to 
a discussion about the relationship that existed between the 
ratios in the table of values it was the return to the visual 
representations of the ratios that assisted students’ conver-
sations about equivalence. As exemplified from the results 
of this study, in this world, they were able to generate three 
different ways to justify that the ratios were indeed the 
same, each dependent on manipulating the tiles themselves. 

Interpreting mathematical signs is a personal process. 
In some instances it appears that students were unable to go 
beyond the written mark, the literal interpretation. The in-
herent triadic nature of sign relations (object, representations 
and interpretation) are exhibited in this research. The tasks 
presented in this research induce an interaction between these 
three dimensions and also exhibit how the interplay between 
different signs and their interpretations bring deeper meaning 
to the object itself. Our role as teachers is to respond to these 
interactions, ensuring that both the classroom discourse and 
mathematical contexts are rich and representative of the full 
range of understandings, so that the original intended mean-
ings are reached by students participating in the dialogue. 

Saenz-Ludlow (2001) refers to this as engaging in 
interpreting games, continually presenting different repre-
sentations and conversations about the object to support the 
development of deeper and richer understanding of the ob-
ject (e.g., the use of tables of values, gestures, and manipu-
lations), and using language and questioning to unpack the 
impact of these representations on cognitive development. 

The Role and Value of the Design (Teaching) 
Experiments

The four imperatives of the design (teaching) experi-
ment methodology: interventionism, teacher-student interac-
tions, simultaneous exploration of teaching and learning, and 
contingency, all played their role in this study. The method-
ology gave us the license to trial our own lesson creations for 
using repeating patterns as a basis for ratio. It directed our 
analysis onto what was happening in the lessons and what 
might have caused it, and so we are able to evaluate the ef-
fectiveness of individual tasks as well as map out learning 
sequences and explore students’ potential for learning. It is 
even partially responsible for the study in the first place; the 
repeating pattern lessons on which this article reports extend-
ed and complemented other studies of growing and repeating 
patterns within a large scale longitudinal design experiment. 
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