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ractions and algebra are critically important components of the mathe-

matics education of our youth. Unfortunately, however, students have
typically struggled in these areas. For this reason, teachers and researchers
have focused their attention on these topics for at least the past century.
This article discusses what research shows regarding fractions and algebra,
particularly, on issues related to when fractions should be taught, how frac-
tions should be taught, and how competence with fractions affects the
transition from arithmetic to algebra will be considered. Suggestions for
teacher practice are included throughout the article.

The case for postponement

The first issue teachers and curriculum specialists must address is when
fractions and rational numbers should be taught. Several researchers feel
that the study of fractions and rational numbers often occurs before the
student is ready. These researchers, who include Kieren and Freudenthal,
suggest postponing the study of rational numbers until they can be taught
within the context of algebraic ideas. Kieren (1976) feels that the experience
base necessary for mature functioning with the complete rational number
concept is best provided in a course of algebra and that, to sufficiently learn
algebraic concepts that are intrinsic to rational number concepts, a student
must experience and master the diverse interpretations of fractional
numbers. Therefore, he recommends that an in-depth consideration of
rational numbers be postponed until such time as the student studies
algebra. Similarly, Freudenthal argues that teaching addition of rational
numbers should be postponed until the concepts arise from algebraic ideas
(as cited in Kieren, 1980).

Other researchers have studied how well students learn fractions when
they are taught, as is usually the case, prior to the teaching of algebra. One
such study tried to gather information about how much average students
can learn about fractions under the best conditions. The results showed
that in well-to-do junior high schools, instruction, even under optimal
conditions, did not provide students with the necessary fractional skills.
While students understood the fraction concept, they showed a poor under-
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standing of the structure of the rational number system (Ginther, Ng &
Begle, 1976). For example, only 30% of the students were able provide the
correct number to make a true statement (Ginther et al.,, 1976, p. 4).
Moreover, the results of the computation test were unsatisfactory and the
students did poorly on simple word problems that involved fractions. This
study suggests that without understanding structure, competent manipu-
lation of fractions will not occur, since too much of the content depends on
rote learning of algorithms, which make little sense to the learner and are
too often misapplied. Is this because the concepts are being presented too
early in a child’s cognitive development? The study does not attempt to
answer this question, but concludes, “Much of the work on fractions should
be postponed to secondary school,” (p. 9).

Approaches to teaching that allow students to construct their own knowl-
edge can be powerful. The writings of Henry Margenau regarding the scientific
method (1961) can shed light on what conditions are necessary in order for a
constructivist approach to succeed and for students “to really know.” He
breaks knowledge into the elements of fact and construct and goes on to
describe and redefine each element. Facts function as protocols, the “first
draft of an experience later to become formalised knowledge” (p. 5).
Constructs are the result of the processes of generalising and logical
reasoning that lead to abstraction and ownership of complex concepts
through a “long chain of activity” (p. 5). Protocols are collections of facts and
related experiences that an individual brings to bear upon a problem. If the
facts and related experiences can be connected effectively, then the individual
is able to construct their own knowledge. If the facts are isolated and related
experiences are not present, then one is unable to make the necessary
connections to form a valid construct. These connections are like pathways
that the learner logically negotiates to link relevant protocols and established
constructs, which can be applied to a problem or to new learning (p. 16).

Margenau’s thoughts can be applied directly to the rich and complex
concept of rational numbers. Kieren (1980) asserts that the number of
disjointed protocols a learner must control to form the rational number
concept is extensive. Too often an algorithm has simply been taught,
providing no connections for understanding, and leaving the student
clinging to a prescribed step-by-step set of instructions. Algorithms that are
taught when the concept is beyond the learner’s cognitive development,
force the learner to abandon their own thinking and resort to memorisation
— doing without understanding.

If the algorithm is forgotten, the learner must retreat to familiar protocols
(procedures), which can be applied in the given situation. For example, the
individual may try to apply a natural number protocol for addition of frac-
tions, adding both numerators and denominators, since addition of natural
numbers arises from the natural activity of children (Kieran, 1980, p. 102).

Postponement and developmental readiness

Piaget’s theory of cognitive development (Wadsworth, 1996) concludes that,
in general, school-age children are either in the concrete operational stage
(ages 7-11) of development or in the stage of formal operation (ages 11-16).
The child in the concrete stage “must deal with each problem in isolation”
(p. 112) and is unable to construct new knowledge from internal reflection
alone. Formal thinkers are able to generalise and use internal reflection
that “can result in new knowledge — new construction” (p. 118). In terms
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of Margenau (1961), this suggests that the individual in the stage of
concrete operations does not progress very far into the constructional
domain, yet is able to develop and connect simple protocols that are closely
related to the individual’s experience (p. 11).

The concrete operational child is capable of learning the basic part-whole
relationship of rational numbers, but this is not enough for complete under-
standing of the rational number concept (Lamon, 1999). If instruction
proceeds directly to computation procedures, then the child neither has the
time nor the cognitive development to construct understanding.

Two important formal operational schemes are proportion and probability
(Wadsworth, 1996). Both of these schemes are elemental to the rational
number concept. Susan Lamon (1999) states “instruction needs to take an
active role in facilitating thinking that will lead to proportional thinking”
(p. 4). Mathematical topics that are related to proportions are fractions, deci-
mals, ratios, percents, probability, similarity, linear functions, equivalence,
measurement, and many others (p. 9). Consequently, a sizable gap exists in
an individual’s rational number concept, a gap that will become even more
apparent as the individual begins to tackle a course in algebra.

McBride and Chiappetta (1978) investigated the relationship between
proportional thinking and a student’s ability to understand concepts related
to simple machines and equivalent fractions. They reasoned that, in order
to understand equivalent fractions, a student would need to think at
Piaget’s stage of formal operations. Consequently, students in the concrete
operational stage could not be expected to demonstrate understanding in
equivalent fractions after studying them in school. The reasoning ability of
these students would limit their understanding of this concept. Since
Piaget’s stage of formal operational thinking begins around age 11 or 12,
few students below this age level should be expected to display comprehen-
sion of the concept of equivalent fractions.

Several other studies provide support for this assertion. In one such
study, only 7% of 9 to 12 year old students who had studied equivalent frac-
tions were able to demonstrate understanding (Novillis, as cited in McBride
& Chiappetta, 1978). In another study of 9 to 12 year olds, only 50 % were
able to show comprehension of equivalent fractions, leading the authors to
conclude that formal operational thinking was necessary for success with
this topic (Steffe & Parr, as cited in McBride & Chiappetta, 1978). Similar
findings by McBride and Chiappetta (p. 8) led them to conclude that propor-
tional thinking is an underlying factor associated with achievement in
equivalent fractions, supporting the hypothesis that postponement of
teaching certain rational number concepts until secondary school is a
viable alternative.

An extensive study of common fraction understanding and decimal frac-
tion understanding was undertaken in upper socio-economic suburbs of
Hobart, Tasmania. This study examined contexts related to diagrams, algo-
rithms, and problem solving. The results were compiled for three levels of
students, grades five and six, grades seven and eight, and grades nine and
ten. With regard to diagrams, the results indicated that students at all three
levels had a better concrete understanding of common fractions than of
decimal fractions. In the problem-solving context, students at each level
performed essentially the same (very poorly) for both common and decimal
fractions (p. 10). The algorithmic results, however, indicated that students
below grade nine were substantially better at applying decimal fraction algo-
rithms than common fraction algorithms (Watson, Collis, and Campbell,
1995). Kieren (1976) supports these results, since operations on decimal
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fractions “form a natural extension to the whole numbers” (p. 102). However,
by grades 9 and 10 the ability to manipulate common fractions was slightly
better than the ability to manipulate decimal fractions (Watson, Collis &
Campbell, 1995), lending credibility to the argument for postponement of
teaching common fraction operations until secondary school

Some possible solutions

Currently, there is no indication that the mathematics curriculum will be
modified to accommodate the previously discussed suggestions for post-
ponement, despite an apparent lack of developmental readiness. Therefore,
the logical alternative is that teachers need to provide better and more
meaningful instruction of fraction concepts. Calls for improvement in this
area are not new. More than twenty-five years ago, Ginther, Ng, and Begle
(1976) suggested that research be done to discover whether or not better
instruction would result in improved student learning of fractions.
Research has been done, methods have been refined, but there has been
little if any improvement as indicated by the data. If fewer than half of the
adult population are able to reason proportionally (Lamon, 1999), then even
the best instruction coupled with experience can be expected to have little
effect on developing sophisticated mathematical reasoning (p. 5).

One positive finding with regard to the teaching of fractions suggests that
providing increased time on this topic may be the answer. Studies have
shown that if children are given the time to develop their own reasoning for
at least three years without being taught standard algorithms for operations
with fractions and ratios, then a dramatic increase in their reasoning abili-
ties occurred; including their proportional thinking (Lamon, 1999). How
fractions should be taught is inexorably linked to when the concepts are
being presented and what impact the learned concepts will have on future
mathematics courses such as elementary algebra.

Re-teaching the definition of fractions is one approach that can be effec-
tive when students experience problems with fractions. De Morgan (1910)
suggests that a student having difficulties with fractions should return to
the original definition and reason upon the suppositions, neglecting the
rules until he or she can cognitively establish them by reflection upon
familiar instances (p. 40). In this brief statement, De Morgan illuminates
two of the major problems with the teaching of fractions. First, the concept
of a fraction is never clearly defined (Wu, 2001); thus, returning to an orig-
inal definition is impossible. Second, more time is needed to allow students
to invent their own ways to operate on fractions rather than memorising a
procedure (Huinker, 1998). An awareness of these shortcomings in the
present approach to teaching fractions can be beneficial to teachers. If
teachers make sure they provide a sound definition of a fraction and provide
additional time for student exploration with fractions they may find that
their students perform better.

Pedagogical reform

Based on the research already discussed, it seems clear that teachers need
to reform the pedagogies by which they teach fractions. Additional support
for change is provided by the results of The National Assessment of

Educational Progress (NAEP, Mullis et al., 1990), a United States report.
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This study indicated that only 46 % of twelfth grade students demonstrated
success with decimals, percents, and fractions. Similarly, the 1999 NAEP
reports that twelfth grade students responded correctly to test items related
to the operations on fraction numbers only fifty per cent of the time (NCES,
1999). The remainder of this section will be devoted to discussing some
potential pedagogical reforms that could serve to improve teaching methods
in this area.

A change in emphasis from the development of algorithms to perform
operations to the development of quantitative understanding based on
students’ experiences with physical models that emphasise meaning rather
than procedure may be warranted (Bezuk & Cramer, 1989, p. 157). An
added focus on problem solving is another potentially beneficial pedagogical
technique. A problem-solving approach to teaching fractions was tested on
fifth-graders in an urban school (low SES, Huinker, 1998). The students
were not taught how to add, subtract, multiply, divide, or compare frac-
tions, but instead, were left to develop meaning for fraction operations
within the context of solving problems. The students in this four-week
study “constructed intuitive quantitative understandings of fraction
concepts and operations in the context of solving and posing realistic prob-
lems” (Huinker, 1998, p. 181). Carefully directed lessons can be designed to
encourage students to form their own algorithms for adding and
subtracting fractions. These student-invented algorithms are often very effi-
cient and, with direction from the teacher, can be generalised to become
powerful mathematical tools (Lappan & Bouck, 1998, p. 184).

Effective methods for the teaching of understanding of fractional
numbers must be concerned with allowing students the time to construct
their own understanding as teachers direct them toward accurate and
meaningful student-invented algorithms. Bezuk and Cramer (1989) offer a
few general recommendations, which are echoed in much of the literature
concerned with the teaching of fraction concepts. These are:

1. the use of manipulatives is fundamental in developing students’
understanding;
2. the majority of the time spent on fractions before grade 6 should be

devoted to developing a conceptual base of fraction relationships;

3. operations on fractions should be delayed until students have a solid
understanding of order and equivalence of fractions; and

4. the size of the denominator for computational exercises should be 12
or below (p. 158).

Teacher content knowledge and additional
pedagogical considerations

A study conducted by Putt (1995) shows that a relationship exists between
teachers’ knowledge of mathematics and student learning. This study found
that misconceptions about rational number concepts held by students were
also evident among teachers (p. 11). The error patterns that are passed from
teacher to student year after year create confusion and math anxiety, which
too often begins right after introduction to fraction computation. Wu (2001)
adds that teachers must have the necessary mathematical knowledge to be
able to correctly guide their students through the subject and that text-
books must be written that treat fractions logically (p. 6).

Susan Lamon’s book, Teaching Fractions and Ratios for Understanding:
Essential Content Knowledge and Instructional Strategies for Teachers
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(1999) provides a valuable resource that can help pre-service teachers
acquire the requisite knowledge to teach fractions effectively. This book is
designed to develop the rational number concept among this audience.
Lamon underscores the rich “constructional domain” (Margenau, 1961,
p- 9) for a simple fraction such as 3/4 supporting the position that frac-
tional numbers might best be taught in the context of problems. There are
many more interpretations of 3/4 than the simple, and single meaning as
three parts of a four-part whole (p. 32).

Other researchers take a somewhat different position. Wu (2001), for
example, feels that conceptual complexities are too often emphasised “at the
expense of the underlying simplicity of the concept” (p. 2). When students
are led through a multitude of interpretations, the simplicity is lost and the
students are deprived of an essential component of doing mathematics: the
ability to abstract. Wu’s position is that prior to the fifth or sixth grade, chil-
dren should become acquainted with fractions in an intuitive way through
explorations, collecting data without concern for meaning; but then Wu
(2001) goes on to state that, “when confronted with complications,
[students] try to abstract in order to achieve understanding” (p. 5). He
believes that the processes of abstraction should be introduced as soon as
possible in the school mathematics curriculum, and that the teaching of
fraction computation would be “as soon as possible,” since at the age of
eleven or twelve children are moving into formal operations and are capable
of employing “reflective abstraction” (Wadsworth, 1996). “By giving abstrac-
tion its due in teaching fractions, we would be easing students’ passage to
algebra as well” (Wu, 2001, p. 6).

Sharp (1998), like Wu, believes that algebraic thinking can be developed
as students are taught fractions. She suggests a method for teaching divi-
sion of fractions that uses an algorithm that follows directly from whole
number operations and fraction concepts. Since much of algebra is gener-
alised arithmetic, prior practice in generalising previously developed
algorithms can begin to build the type of thinking that is necessary for the
transition from arithmetic to algebra (p. 203). If the logical development of
algorithms for rational number operations, supported by fraction concepts,
promotes algebraic thinking, then it would follow that students who have
constructed a viable rational number concept would be successful in
algebra.

The relationship between fractions and algebra

There are at least three critical achievements in the mathematical life of a
student: mastering the idea of ten as a unit, understanding fractions, and
grasping the concept of the unknown. Consequently, when attempting to
learn algebra without the aid of understanding fractions, “it is no wonder
that many students’ seeming mastery of fractions begins to fall apart”
(Driscoll, 1982, p. 107).

Rotman (1991) contends that although an arithmetic course need not be
prerequisite for a first-year college algebra course, the understanding of
“fraction concepts deserve[s] to be singled out, because algebra typically
uses fractional notation to indicate a quotient” (p. 8). Similarly, Wu (2001)
asserts that the study of fractions has the potential for being the best kind
of pre-algebra and argues that unless the way in which the teaching of frac-
tions and decimals is radically changed, then the failure rate in algebra will
continue to be high (p. 10). He claims that adding fractions has become a
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conceptual preoccupation, but that understanding the concept is not suffi-
cient; there is the need for fluency in computation. Wu insists that such
fluency — the ability to efficiently manipulate fractions — is “vital to a
dynamic understanding of algebra” (p. 17). Vague fraction concepts and
misunderstood fraction algorithms will ultimately be generalised into vague
algebraic concepts and procedures. The lack of precise definitions and
reliance upon shortcuts that are thoughtlessly given to students are likely
to hinder performance in algebra. Additional support for this position is
provided by Laursen (1978) who found that many of the errors that
students make in first-year algebra are due to an incomplete understanding
of fraction operations and the subsequent misapplication of imprecise algo-
rithms, which were previously taught as shortcuts.

Kieren (1980) suggests that there are algebraic aspects of operations on
fractions, but that most school curriculum materials simply treat fractions
as objects of computation. Rational numbers present the student with alge-
braic problems. The student must:

1. understand the notion of equivalence;

2.  deal with an addition operation based in axiomatic reasoning rather
than the natural extension of whole number addition;

3. work with a multiplication operation that is distinct from addition and
is abstractly defined; and

4. cope with abstract properties and the concept of an inverse (p. 102).

If students have not had opportunities to learn how to abstract prior to an

elementary algebra course, then they may opt for rote learning — the

memorisation of algorithms without any conceptual basis — that allowed

them to appear to be successful with fraction computation.

Generality and abstraction are characteristics of algebra that must even-
tually be expressed in symbolic notation (Wu, 2001). Fluent computation
with numbers lies at the foundation of the ability to perform symbolic
manipulations (p.13). When teaching addition of fractions, without the
concept of the lowest common denominator, Wu suggests that the operation
be clearly defined as . This formula can be first used for cases where a, b,
c, and d are small numbers and then slowly built up from these specific
cases to the general case. Wu insists that without such a foundation in frac-
tions, students will be severely hindered when they come to study rational
expressions in algebra (p. 14).

Discussion

There is no escaping fractions in algebra. From linear equations to
completing the square, from solving systems of linear equations to solving
rational equations, and from simple probabilities to the binomial theorem,
algebra is replete with examples that are directly and indirectly related to
fractions. Much of the basis for algebraic thought rests on a clear under-
standing of rational number concepts (Kieren, 1980; Driscoll, 1982; Lamon,
1999; Wu, 2001) and the ability to manipulate common fractions. “With
proper infusion of precise definitions, clear explanations, and symbolic
computations, the teaching of fractions can eventually hope to contribute to
mathematics learning in general and the learning of algebra in particular”
(Wu, p. 17).

As this article suggests, extensive research has been done in the areas of
fractions and algebra, much of which considers the relationships between
these two difficult, but important, topics. Since no definitive conclusions
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can yet be drawn, it is incumbent upon teachers and researchers alike to
implement innovative strategies and to study the efficacy of these strategies
with the ultimate goal of improving instruction in these critical areas. We
continue this argument in a subsequent article that will discuss data from
our research, and consequent implications for classroom teaching.
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