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1 Longitudinal studies provide important sources of 
information when investigating how differences in various 
national and regional school policies, practices and 
compositional characteristics relate to differences in student 
achievement over a period of time. Therefore, it is not 
surprising that the use of growth modeling techniques in 
educational fields has rapidly increased. Recent years have 
produced a vast range of applications of structural equation 
modeling based (SEM) latent growth modeling (LGM) in 
applied longitudinal data analysis (Curran & Hussong, 2002; 
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Meredith & Tisak, 1990; Muthén, 1991; Willett & Sayer, 
1994). With the flexible usage of latent growth factors and 
measurement error structures, LGM is capable of testing the 
relative fit of various competing models. Within the domain 
of hierarchical structure, the hierarchical linear model (HLM) 
has created a powerful set of techniques for research on 
individual change (Bryk & Raudenbush, 1987; Foorman, 
Francis, Novy, & Liberman, 1991; Huttenlocher, Haight, 
Bryk, & Seltzer, 1991; Rogosa & Willet, 1985). When applied 
with valid measurements from a multiple-time-point design, 
this model affords an integrated approach for studying the 
structure and predictors of individual growth (Raudenbush & 
Byrk, 2002). Both techniques have the ability to test models 
that include multiple levels of hierarchical structured data and 
the capacity to embed assessments in more complex models 
that assess potential predictors, mediators, and consequences 
of change (Curran & Hussong, 2002; Raudenbush & Byrk, 
2002). Additionally, such approaches are better able to assess 
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the multivariate patterning change across multiple measures, 
compared to other traditional methods (Willett & Sayer, 
1996). The differences are that in LGM, each participant is 
required to have the same number and spacing of time points, 
and level-1 predictors with random effects must have the same 
distribution across all participants in each subpopulation, 
while HLM allows unequal numbers and spacing of time 
points as well as the different distributions of level-1 
predictors (Raudenbush & Bryk, 2002). 

However, the underlying assumptions therein would 
appear to limit their applicability. LGM and HLM are based 
on a likelihood-based approach in computing population 
parameters. This maximum likelihood (ML) technique2 is 
developed under the assumption of multivariate normality and 
requires a large sample size (Bollen, 1989; Curran, 2003; 
Jöreskog, 1969). A large sample yields a covariance matrix 
that is able to produce a better estimate of the population 
covariance matrix, and should therefore be expected to offer 
enhanced opportunities to successfully identify the correct 
model (MacCallum, 1986). Moreover, under the assumption 
of a multivariate normal distribution of the observed variables, 
ML estimators have the desirable asymptotic properties of 
being unbiased, consistent, and efficient (Kmenta, 1971). 
Unfortunately, there were many situations in which these 
assumptions were violated in practice. For instance, Miccéri 
(1989), in his survey of empirical data sets, found that the 
distributional characteristics of 440 large-sample achievement 
and psychometric measures were all significantly nonnormal. 
Despite the development of robust approaches, Chou, Bentler, 
and Satorra (1991) and Gold, Bentler, and Kim (2003) argued 
that improvements in Yuan-Bentler ML and asymptotic 
distribution free method (ADF) are clearly needed, in 
particular under extreme nonnormal conditions and/or small 
sample size. Many researchers (Boosma, 1985; Anderson & 
Gerbing, 1984; Enders & Bandalos, 2001) have pointed out 
that sample sizes of 100 or less tended to result in high rates 
of non-convergence in SEM analysis. Therefore, the 
likelihood estimators may not have the desirable properties. In 
addition, a covariance structure approach has proven 
problematic when intercorrelations among some variables are 
high. Kline (1998) suggested that multicollinearity is the 
major reason why a sample covariance matrix may be non-
positive, and that certain mathematical operations are either 
impossible, or the results are unstable, because some 
denominators are very close to zero. Thus, the covariance 
matrix cannot be inverted to compute the parameter estimates, 
and it may yield larger variances and covariances of parameter 

estimates which in turn can affect significance tests (Biesanz, 
Deeb-Sossa, Papadakis, Bollen, & Curran, 2004; Brekke, 
Long, Nesbitt, & Sobel, 1997; Huttenlocher, Haight, Bryk, & 
Seltzer, 1991; Smith, Landry, & Swank, 2000; Stoolmiller, 
1995). 

In recent years, some pioneers (Davison, Gasser, & Ding, 
1996; Davison, Kang, & Kim, 1999; Ding, Davison, & 
Petersen, 2005; Kim, Frisby, & Davison, 2004) have 
demonstrated that concepts of individual growth modeling can 
be accommodated within the framework of multidimensional 
scaling named longitudinal profile analysis via multidimensional 
scaling (LPAMS). The strength of LPAMS is to allow for the 
simultaneous estimation of intra- and inter-individual growth 
processes using a relatively small number of statistical 
assumptions. Since LPAMS is similar to a hierarchical 
modeling in the sense that it allows one to estimate both 
overall (level-2) and individual (level-1) growth rates, further 
considerations in interpreting the test results are not required. 
Additionally, it does not require a large sample size or 
multivariate normality, but assumes only the homogeneity of 
variance across time. As with any exploratory approach, it is 
designed to identify patterns of growth underlying a set of 
data, not to test a priori hypotheses regarding patterns (Ding, 
2003). Therefore, it is considered most useful in the early 
stages of a research program in which little is understood 
about the underlying growth patterns. Lastly, because LPAMS 
is not based on covariance structure but on proximity distance 
measure (e.g., squared Euclidean distance), multicollinearity 
does not cause any computational problems within LPAMS 
technique.   

The purpose of this study is to investigate the differences 
and similarities and to discuss the strengths and weaknesses of 
LGM, HLM, and LPAMS. In so doing, this study compares 
multilevel growth parameter estimates, model-fit indices, and 
potential predictor effects in answering four central research 
questions: 1) What students’ mathematical growth trajectories 
should be expected, 2) How academic growth rates differ 
regarding potential predictors (English language program 
learner; ELP, special educational program; SEP, and gender), 
3) In multilevel analysis, what achievement patterns found at 
the school level should be expected, and 4) How growth 
trajectories are influenced by a school level predictor (school 
location: urban and suburban schools). Through four primary 
analytical approaches, this study aims to alert applied 
researchers to selected analytical issues that are required for 
consideration in terms of the decision to apply one of these 
approaches to academic growth analysis.  
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Growth Modeling Techniques 
 
Latent Growth Modeling (LGM) 

 
Latent growth modeling (LGM) pertains specifically to 

latent growth factors, rather than to observed repeated 
measures of a construct over time. LGM attempts to smooth 
over observed measures in order to estimate the continuous 

trajectory that gives rise to these time specific observed 
measures (Curran & Hussong, 2002). Therefore, we use the 
observed repeated measures to estimate latent growth factors, 
thereafter focusing on analyzing these latent growth factors. 
To estimate these growth factors, the conceptual models are 
written as the following formations of matrices. Suppose that 
with a linear growth structure one has four repeated measures. 

 
 

Individual      Factor           Measurement 
        Four time points     growth factors   loadings              error  
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where i indicates a specific individual and n notes total number of subjects. 
 

                       Individual    Mean growth    Random 
growth factors     factors        error 

ikη     =     k0α    +     ikζ  
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The first row of the left side matrix in equation 1 

indicates that the first subject (i = 1) is repeatedly measured 
four times. Thus, n subjects have been collected across four 
time points. In LGM formula, observed repeated measures can 
divide into two parts that are on the one hand true latent 
growth function and on the other error term. If a linear model 
is imposed, true latent growth is obtained through multiplying 
two latent growth factors (e.g., 1iη : the individual intercept 
latent factor, 2iη : the individual linear growth latent factor) 
and two factor loadings (a row of 1’s for intercept factor and 

the coding of time: 0, 1, 2, t – 1 for linear factor). From matrix 
equation 2, the estimates of the mean intercept and growth 
factors ( 01μ  and 02μ ) are computed. These are referred to 
as the ‘unconditional latent growth curve model.’ When an 
exogenous variable (X) is presented so as to predict observed 
variability, the equation will be changed. In this case, the 
measurement equation remains the same, but the structural 
formula is extended to include the effects of these predictor 
variables. 
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Regression coefficients 
to intercept and linear growth factors 
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                                                Potential predictor 

 

This model is referred to as the ‘conditional growth curve 
model.’ For the purposes of this research, these conditional 
and unconditional LGM equations are used to estimate the 
growth factors, and test the relative fit of the competing 
models.  

In education, studying growth patterns of standardized 
test scores has been explored in order to investigate the effects 
of improvement efforts on academic performance. These 
efforts are often evaluated in terms of the growth effects of 
within-level (e.g., individual and student level) growth and in 
terms of between-level (e.g., teacher, class, school, and school 
district level) growth3. Therefore, policy makers and school 
administrators are able to obtain valuable information through 
a multilevel analysis in academic growth studies. For instance, 
multilevel models are used to answer whether the growth rates 
of certain schools are faster than those of others. It also 
explores how aggregated level factors (e.g., teacher 
qualification, school budget, school size, etc) affect between-
level growth rates. A number of researchers (Bentler & Liang, 
2003; Linda, Lee, & Poon, 1993; Longford & Muthén, 1992; 
Muthén, 1989, 1994) suggested that this multilevel strategy 
allows for the disaggregation of the within (e.g., student level) 
and between (e.g., school level) covariance structures within a 
single partitioned covariance matrix. This is then used as the 
unit of analysis in the estimation. SEM software (e.g. EQS, 
LISREL, M-plus) is used to compute between-level and 
within-level covariance matrices and between-level means 
from a raw data file, as well as the current iteration estimates 
of model parameters.  

 
Hierarchical Linear Modeling (HLM) 

 
Raudenbush and Bryk (2002) noted that many individual 

change phenomena are able to be represented through a two-
level hierarchical level. At level-1, each person’s development 

is represented by an individual growth trajectory that is 
dependent on a unique set of parameters. They added that 
these individual growth parameters become the outcome 
variables in a level-2 model. Thus, under a linear model at 
level-1 and level-2, equations 4 and 5 simplify to  

 

ititiit eaY ++= − 211 ππ                (4) 

           1011 ii r+= βπ                   (5) 

2022 ii r+= βπ  
 
In this regression equation, ity  is an observed test score 

for person i at time t and 1−ta  is the coding of time variable 
(e.g., 0, 1, 2, …, t – 1 for a linear growth structure). 1iπ  and 

2iπ  are respectively the individual intercepts and the 
regression coefficients with ite  representing the residual 
error term. When one predictor variable (X) is presented, 

 
11011 iii rX ++= λβπ  

                            
22022 iii rX ++= λβπ             (6) 

 
The level-3 model represents the variability in an 

aggregated variable (k). We can view the level-2 means, 
k01β  and k02β , as varying randomly around a grand mean: 
 

kk u0101101 += γβ , kk u0202202 += γβ      (7) 
 
This equation can also be extended for the level-3 

conditional model, as per equation 6.  
The method for formulating the model in HLM is similar 

to that in the LGM approach. In equation 1, the individual 
growth factors ( 1iη  and 2iη ) are equivalent to a matrix 
formation of 1iπ  and 2iπ  in equation 4. 01β  and 02β  
indicate respectively the average of intercept and slope growth 
factors the same as 01μ  and 02μ  of LGM.  
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However, the estimation methods of LGM and HLM are 
fundamentally different. Curran (2003) explained that the 
assumption of independence of observations is highlighted in 
the standard estimation of the SEM in that the discrepancy 
function is based on a single aggregate sample covariance 
matrix that allows for the covariance structure within any 
other level of nesting that is assumed to be null. In contrast, 
the estimation of the HLM outcome incorporates complex 
data structures among lower and higher levels of data 
hierarchy in that the nesting in the data is explicitly modeled. 
Thus, Curran (2003) added that whereas nested data structures 
pose a significant problem to standard ML estimation in SEM, 
the estimation of the HLM explicitly allows for these 
dependent structures. Moreover, time scores are treated as 
data in HLM whereas time scores of LGM are treated as 
parameters. 

 
Longitudinal Profile Analysis via Multidimensional Scaling 
(LPAMS) 

 
The longitudinal profile analysis via multidimensional 

scaling (LPAMS) starts its analysis from the following 
equation: 

 
∑ ++= ittiiit xwcy ε               (8) 

 
where ity  is an observed test score for person i at time 

t, ic  is a 1×i  vector of constant intercept terms, iw  is a 
profile match index characterizing person i, and tx  is a 
growth scale value reflecting the location of a repeated 
variable at time t (Kim, Frisby, & Davison, 2004). If k (≥  2) 
growth dimensions are required (i.e., multidimensional growth 
cases), there will be k numbers of iw  ( ikii www ,....,, 21 ) 
and tx  ( tktt xxx ,....,2,1 ). LPAMS consists of three steps 
(Ding, 2003). The analysis begins with a matrix containing a 
proximity measure defined over all possible pairs of variables. 
In this study, the variables are time points, and the proximity 
measured for each possible pair of time points, a squared 
Euclidean distance measure4, is computed from the raw data. 
When proximity measures are submitted to an appropriate 
multidimensional scaling algorithm, the analysis is expected 
to yield one dimension for each growth curve. Since the 
objective of LPAMS model analysis is to determine whether 
there are particular trend shapes found within the data, and 
whether those shapes are linear curves, nonlinear curves, or 
time-series periodic curves, a multidimensional scaling 
(MDS) estimation method would be capable of identifying 
one or more such trend shapes where such curves exist in the 

data.  
In the second step, the zero point of the scale values are 

reset so that the scale values indicate growth rates for each 
time-point, and in order that the intercept estimate can be 
interpreted as the initial growth level. Ding, Davison, and 
Petersen (2005) and Kim, Frisby, and Davison (2004) have 
explained that if the zero point is set to correspond with the 
growth scale value as at the first time-period, then that will 
result in *

1x  = 0 for all profile k. Therefore, the growth scale 
value of the first time-point is reset to zero on each profile in 
such a way that 1

* xxx tt −= . The rescaled growth scale 
values estimates would have a range of zero to some positive 
or negative numbers, depending on the shape of the curve. 
These growth scale values would represent the growth rate for 
each time-point. The authors added that ic  becomes the 
expected score under the model for person i at initial time t = 
1, reflecting the initial growth level. In the third step, the 
intercept ( ic ) and profile match index parameters ( iw ) can 
be estimated for each individual by regressing the observed 
scores ( ity ) onto the rescaled value estimates ( *

tx ).   
These LPAMS mathematical terms can be interpreted as 

per these of LGM. The averages of ic  and iw  are 
respectively equivalent to 01μ  and 02μ  indicating the 
means of intercept and growth factors in LGM. Also, *

tx  
can be viewed as a special case of factor loading ( yΛ ) in 
LGM (see equation 1). The difference is that LPAMS directly 
calculates *

tx  from the data (random effect), whereas LGM 
considers a fixed effect (e.g. 0, 1, 2,…, t – 1 for the linear 
growth model). Table 1 presents an analogy of the elements 
and notations of three growth modeling structures.  

Since LPAMS offers parameter estimates and a fit index 
of individual growth, it appears to be useful for applied 
researchers interested in predicting each subject’s initial score 
and growth rate. On the other hands, LGM provides average 
growth information and an overall fit index. One other 
difference is that the LPAMS model estimates within 
individual changes with respect to the latent change curves 
using the MDS method and estimates between-individual 
variations via a conventional analysis of variance (ANOVA) 
approach, while HLM represents a clustering of individuals 
within group, and variables are measured at all available 
levels. This model, then, combines variables from different 
levels in one statistical model (Ding, 2003). In addition, the 
LPAMS model is based on a distance model (Borg & 
Groenen, 1997; Davison, 1983) rather than a linear model. 
Thus, it can be used to model data that, by nature, are 
nonlinear. For conditional analysis, LPAMS is easily capable 
of testing the effects of potential predictors to growth profiles  
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Table 1 
Analogy of elements and notations of three growth modeling structures 

 LGM HLM LPAMS 
Factor loading yΛ  
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Growth parameters    
Intercept 

1iη  1iπ  ic  

Slope 
2iη  1iπ  iw  

Mean intercept 01μ  01β  c  
Mean slope 02μ  02β  w  

Note. This comparison is based on a linear growth structure with t time points 
Note. The different way of fixed growth effect time coding (e.g., centered time coding) in LGM and HLM can be implemented (Biesanz, 
et al., 2004; Brekke, et al., 1997; Huttenlocher, et al., 1991; Smith, Landry, & Swank, 2000; Stoolmiller, 1995).  
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Figure 1. 15 Randomly Selected Individual Growth Curves for Mathematics Achievement Scores over Four Time Points 
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by using the ANOVA approach. LPAMS performs 
aggregation of the individual test results into high level 
variable (aggregated variable) for multilevel analysis.  

 
 

Methodology 
 

Sample Description   
 
The data set was obtained from a sample of 1244 students 

from a large school district. These students were in the 2nd 
grade at the first instance of measurement, and were then 
followed for four years (from 1998 to 2001). The students took 
a mathematics achievement test, (the Northwest Achievement 
Level Math Test), with vertically equated scale scores each year 
from the 2nd to 5th grades. Both LGM and LPAMS models 
require time-structured data so that all sample members were 
observed on the same set of occasions. Figure 1 displays the 
math growth trajectories of 15 randomly chosen students. From 
the graph of their individual curves, we might infer that most 
individual math scores tended to increase over time.  

Three covariates measured for student level analysis at 
the first time-point were considered. These potential 
predictors of change were coded: 0 = students were not in 
special educational program (SEP), and 1 = students were in 
SEP; 0 = female, and 1 = male; 0 = non-English language 
leaner (ELL), and 1 = ELL. 53% of the students were male. 
12% were in special educational programs and 24% had 
limited English proficiency levels. The students were enrolled 
in a total of 28 schools. The ranges of the number of students 
nested within one school were 30 through 68. 7 schools were 
situated in suburban area, with this school location considered 
an exogenous variable for school level analysis.  

 
 

Results 
 
Table 2 summarizes the unconditional test results of 

student and school levels for LGM, HLM, and LPAMS 
models. The quadratic growth models of LGM and HLM 
yielded the best fit in terms of student and school level. A 
LGM’s standard decrement-to-chi-squared test between linear 
and nonlinear models (e.g., student level: change in x2 = 
13.370 on df = 3 with the critical value x2 = 7.815 at α = .05) 
and HLM’s deviance test between two models (e.g., student 
level: change in deviance = 40.862 on df = 5 with the critical 
value x2 = 11.070 at α = .05) also revealed that the quadratic 
model fit the data better than the linear model. However, the 

means and variances of quadratic factors for both student and 
school levels were not significant. Additionally, the linear 
growth model with heterogeneous error variance structure 
presented reasonable model-fit statistics. Thus, this study 
interprets the change and variability of math achievement with 
a linear growth function. As previously mentioned, where 
there is more than one growth trend (e.g., nonlinear curve) in 
the data, the LPAMS model can simultaneously identify these 
curves with single growth factor. Therefore, the model-fit 
testing between linear and nonlinear models is not necessary 
under LPAMS analysis conditions. 

 
Unconditional Student and School Level Analyses  

 
For the unconditional student level analysis, all methods 

yielded similar mean growth parameter estimates. The 
average initial and growth scores of LGM, HLM, and LPAMS 
were respectively 194.580, 194.532, and 194.286, and 8.800, 
8.975, and 9.824. However, the predicted mean scores for 
each year should be calculated differently. In this study, while 
the growth factor loading is fixed, such as at 0, 1, 2, 3 for a 
linear model in LGM and HLM, the LPAMS model uses a 
sample-driven factor loading, such as at 0, .992, 1.757, 2.723. 
Again, the factor loading (scale value) has a random effect in 
LPAMS, whereas time is entered as the values of the factor 
loadings relating the repeated measures to the underlying 
latent growth factors in LGM and HLM. The growth levels of 
15 randomly selected individual students under LPAMS are 
presented in Table 3. 

The variance components of initial and growth parameter 
estimates for all three approaches were statistically 
significant. This suggests that there was meaningful evidence 
of inter-individual heterogeneity at the first time-point and 
over time. However, LGM and HLM tended to produce the 
smaller intercept and slope variance estimates (168.503 and 
4.744 for LGM; 169.303 and 4.446 for HLM) than LPAMS 
(194.652 and 12.728). Significantly, the major difference was 
found in covariance estimate testing. The covariance 
parameter estimate found under LGM and HLM (respectively 
10.512 and 10.571) revealed a significant positive relationship 
between intercept and growth factors (correlation = .372 for 
LGM and .385 for HLM). This estimate suggests that growth 
rates of students reporting higher math scores in the first year 
would be relatively faster than those of students reporting 
lower achievement scores in the same year. In contrast, the 
covariance of LPAMS ( .083) was not found to be significant. 
This result indicates that students’ initial scores would not be 
related to their academic growth rate levels. 



Practical Issues of Growth Modeling Techniques 

 269

 

Table 2 
Results of Unconditional Multilevel Analyses 

 Student Level    School Level 

 LGM 
Heterogeneity 

HLM 
Heterogeneity 

LPAMS LGM 
Heterogeneity

LGM 
Homogeneity 

HLM 
Homogeneity

LPAMS 

Average 
Intercept 194.580*** 194.532** 194.286*** 194.138*** 194.195*** 194.195*** 193.893***

Average 
Slope 

8.800*** 8.795*** 9.824*** 8.794*** 8.707*** 8.701*** 9.725*** 

Variance of 
Intercept 168.530*** 169.303*** 194.652*** 24.445*** 27.354*** 29.305*** 34.917*** 

Covariance 
of Intercept 
and Slope  

 
10.512 

(.372)** 

 
10.571 (.385)** 

 
.083 (.002) 

 
2.805 (.625)* 

 
2.235 (.528) 

 
1.435 (.245)

 
1.602 (.114)

Variance of 
Slope  4.744** 4.446** 12.728** .825 .957 1.168* 1.753* 

 
Model 

Fit 

2χ = 52.126  
with df=5 

p-value = .000, 
RMSEA=.064 

Deviance =  
35449.761 

 
 

 

STRESS 
< .001, 

Average  
R-square 
 = .865 

2χ = 19.466 
with df=8 

p-value = .013,
RMSEA=.045

2χ = 24.921  
With df=11 

p-value=.009, 
RMSEA=.048 

Deviance = 
35264.986 

 
 

 

STRESS 
< .001, 

Average 

R-square = 
.857 

*** p < .001; ** p < .01; * p < .05. 
Note. The parenthesis ( ) indicates the correlation values. 
Note. Heterogeneity refers to a heterogeneous error structure being imposed. Homogeneity indicates that the homogeneous error variance 
is implemented. 
 
Table 3 
Growth Information of 15 Randomly Selected Students by LPAMS 

Student ID Intercept ( ic ) Growth Profile ( iw ) Model-Fit (r-square) 

464480 199.87 6.02 0.81 
701170 174.96 7.41 0.86 
513985 169.18 8.75 0.96 
546458 188.64 5.73 0.93 
637986 185.19 12.76 0.97 
748844 178.41 6.75 0.92 
546325 182.21 11.75 0.94 
837838 175.55   11.35 0.98 
337442 174.16 10.3 0.88 
917907 186.28 7.33 0.91 
925041 185.07 13.93 0.95 
338119 195.95 13.54 0.94 
688223 176.05 11.09 0.88 
294498 172.36 14.21 0.89 
836006 187.79 9.84 0.95 
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The different model-fit indices were considered for the 
three modeling techniques. In LGM, most applied researchers 
are interested in the chi-square fit test and the root mean 
square error of approximation (RMSEA). Various fit indices 
(e.g., GFI, AGFI, NFI, CFI, etc.) are also supplied by SEM-
based software. HLM yields the deviance values and finds the 
most plausible model through the deviance-difference test. 
For LPAMS, the adequacy of one-dimensional MDS solution 
is verified by the MDS fit index, STRESS formula 1 (Kruskal, 
1964). Furthermore, an r-square value is imposed on the 
model so as to examine the goodness of fit. In this study, the 
linear LGM exhibited a reasonable fit. The chi-square fit 
statistic was 52.126 with df = 5, p < .001. With over 1000 
people in the sample, this chi-square statistic has a large 
degree of power to detect even small deviations from the 
model. The GFI (goodness of fit index) equaled .995. The 
RMSEA equaled .064. According to the guidelines of Browne 
and Cudeck (1993), an RMSEA of .05 or less signifies a close 
fit, with that at or below .08 indicates a reasonably fitting 
model. While there were statistically significant deviations 
from the model, these deviations were small, and the 
covariance structure showed a reasonably good level of fit. In 
HLM, the linear model with a heterogeneous error structure 
model fit the data better than that with the homogeneous error 
variance model (deviance of difference 2x = 28.465 on df = 3 
with a critical value x2 = 7.815 at α = .05). Lastly, the STRESS 
formula 1 value of LPAMS was less than .001, indicating the 
rank ordering of four proximity data points could be perfectly 

reproduced by the one-dimensional solution obtained. The 
mean r-square value of the LPAMS approach was .865. This 
indicated that the average 86.5 % of total variability was 
accounted for by the LPAMS growth equations. 

All three modeling techniques again yielded similar 
mean growth parameter estimates at the school level. These 
results indicated that schools were reporting significant initial 
math scores of approximately 194 points, and linear rates of 
increase around 9 points per time-point. However, dissimilar 
results of statistical testing on variance and covariance 
parameter estimates were discovered. The variance estimates 
of LPAMS were larger than those of LGM and HLM. 
Moreover, the variance of LGM growth rates (.825) was not 
significant, while that of HLM and LPAMS growth profiles 
(respectively 1.168 and 1.753) expressed meaningful evidence 
of school variability over time. In the case of the covariance 
parameter estimate, LGM found a significant positive 
relationship between initial and true growth factors 
(covariance = 2.805, correlation = .625). This estimate 
suggests that the schools that reported higher math scores at 
the beginning time-point tended also to report faster rates of 
increase than schools reporting lower math scores in the first 
year. On the other hands, HLM and LPAMS revealed no 
significant relationship between intercept and growth factors.  

 
Conditional Student and School Level Analyses   

 
The test results of the three different approaches suggest 

 
Table 4 
Results of Conditional Multilevel Analyses 

Student Level School Level 

 LGM 
Heterogeneity 

HLM 
Heterogeneity

LPAMS  LGM 
Heterogeneity 

HLM 
Homogeneity

LPAMS

Intercept and LEP -2.129 (-.377)** -11.614** -11.633**
Intercept and 
LOCATION

1.619 (.538)** 8.845** 9.197**

Intercept and SEP -2.503 (-.272)** -10.822* -10.789**  -- -- -- 

Intercept and 
GENDER 

1.621 (.198)* 1.514* 1.506*  -- -- -- 

Slope and LEP -.027 (-.029) -.070 -.006 
Slope and 

LOCATION
.126 (.134) .614 .448 

Slope and SEP -1.005 (-.204)* -1.873* -2.078*  -- -- -- 

Slope and 
GENDER 

.069 (.063) .258 .289  -- -- -- 

*** p < .001; ** p < .01; * p < .05.  
Note. The parenthesis ( ) indicates the correlation values. 
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that a moderate level of collinearity exists between the 
covariates and the growth factors of math scores. LGM found 
that with a negative relationship between English language 
learner (ELL) status and initial factor (covariance estimate = -
2.129; correlation estimate = - .377), we are able to conclude 
that students who were in ELL reported lower math scores 
than students not in said program at the beginning time-point. 
With respect to the special education program (SEP), effects 
were found on both the intercept and growth terms. The 
negative relationship between SEP and the initial factor 
(covariance = - 2.503; correlation = -.272) indicated that SEP 
students reported lower math scores in the 2nd grade. 
Additionally, the growth rate of SEP students (covariance = - 
1.005; correlation = - .204) was relatively lower than that 
found among non-SEP students. Finally, male students 
reported higher math scores in the first year (covariance 
=1.621; correlation = .198), while there was no significant 
gender-related impact on the growth rates. HLM and LPAMS 
also showed that students who took the English language 
program reported lower math achievement levels, to the extent 
of an average of 11.614 (11.633 for LPAMS) points in the 
first year. SEP students reported lower initial and growth 
scores of respectively 10.822 and 1.873 (10.789 and 2.078 for 
LPAMS) points than non-SEP students. Finally, male students 
tended to obtain slightly higher average math scores at the 
beginning time-point (i.e., as much as 1.514 points for HLM, 
and 1.506 pints for LPAMS).  

There was one potential predictor for the conditional 
analysis at the school level, which was school location (7 
suburban and 21 urban schools). By LGM, the results of 
testing the school location variable suggested that school 
location had a significant effect on the intercept factor, 
whereas growth rate was not influenced by the same variable. 
This result indicates that schools located in suburban areas 
reported higher math scores than urban-located schools at the 
beginning time-point (covariance = 1.619, correlation = .538). 
HLM also revealed that suburban schools reported higher 
math score, by as much as 8.845 (9.197 for LPAMS) points in 
the first year, with no subsequent relationship between school 
location and growth rate. Table 4 illustrates the test results of 
conditional student and school levels.  

 
 

Discussion 
 
LGM, HLM, and LPAMS methods of analysis resulted 

in no significant differences in average growth parameter 
estimates in the student and school level analyses, regardless 

of the imposition of different growth factor loadings. In the 
case of the effects of potential predictors to growth factors, all 
modeling techniques yielded the same test results. The math 
achievements of non-SEP, non-ELL, and male students tended 
to be higher than those of other students at the beginning time-
point. The growth rate of non-SEP students was also faster 
than that of SEP students. For the purposes of the multilevel 
analysis, although urban schools had a tendency to report 
lower academic achievements, there were no significant 
differences in the growth rates depending on school location. 

However, this study presented some dissimilar test 
statistics among LGM, HLM, and LPAMS methods. Firstly, 
the student and school levels’ variance parameter estimates of 
LGM and HLM tended to be smaller than those of LPAMS. In 
the case of school level, HLM and LPAMS produced 
significant school level differences with regard to growth 
rates, whereas LGM did not. Importantly, the major 
discordance among growth techniques was the significance 
test results on covariance parameter estimates. LGM 
persistently showed that initial status and true gains were 
positively related in student and school level analyses. This 
indicates that these achievement gaps increased, as students 
and schools with lower scores at the beginning also reported 
lower growth rates. The patterns of variances for student and 
school levels over time fully support these interpretations. 
From 1998 to 2001, since the variances of student and school 
levels tended to increase over time (respectively, 214.564 > 
209.987 < 259.662 < 294.077; 40.368 > 34.078 < 51.294 < 
57.035), we should therefore conclude that the achievement 
gaps among students and schools widen. HLM showed a 
significant relationship between intercept and slope in the 
student level, while that relationship disappeared in the school 
level analysis. Additionally, none of the covariance estimates 
in student and school levels were deemed significant under the 
LPAMS approach. This suggests that the achievement gaps 
among students and schools were parallel across years.  

There are a number of potential reasons behind 
dissimilarities in test results among LGM, HLM, and LPAMS 
methods. Firstly, LGM and HLM use the ML technique to 
estimate the population parameter estimates, whereas the 
ordinary least squares estimator is imposed to obtain LPAMS 
parameters. When observations are independent of one 
another and are normally distributed with a constant variance, 
both ML and least square methods intersect (Myung, 2003). 
However, most research situations do not meet these 
conditions. Especially under longitudinal study, since it tracks 
the same persons and involves observations of repeated 
measures over time meaning that auto-correlated errors are an 
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important consideration, ML estimates are more likely to 
differ from ordiarny least square estimates. Secondly, the 
assumption of homogeneity of variance would affect the test 
statistics. Although LPAMS assumes a homogeneous error 
variance only, an equal variance assumption is more likely to 
violate this in actual longitudinal analysis. In this study, given 
that the homogeneity of the variance test was rejected, we 
should be careful when interpreting the test results produced 
by LPAMS. The level-3 (between-level) growth information 
would also be influenced by this assumption. Raudenbush 
and Bryk (2002) argued that when unidentified slope 
heterogeneity at lower-level appears as the heterogeneity of 
lower-level error variance, such slope heterogeneity might be 
expected to bias estimates of the higher-level coefficients. 
Related to this issue, the different measurement error 
structures may be sufficient to cause different statistical 
testing on variance and covariance estimates. LGM can 
impose both the heterogeneous and homogeneous error 
variance models on the within- (level-2 in HLM) and 
between-level (level-3 in HLM) testing, while HLM cannot 
implement the heterogeneous error variance model on the 
analysis of level-3. Therefore, where the homogeneous error 
structure is implemented within an LGM context at the school 
level, the variance of the slope factor tended to be larger, and 
covariance between the initial status and true gain became 
insignificant, as illustrated in Table 3.   

Another possible explanation of the differences in the 
test results may be due to sample size. LGM and HLM 
procedures, which are maximum likelihood based approaches, 
would not ordinarily produce stable results if the sample size 
at any level is too small. Additionally, given a small country-
level sample size (27 countries), Cheung and Au (2005) 
reported that results at the individual level were quite stable 
even when using such small individual-level sample sizes, 
whereas the group-level parameter estimates and their 
standard errors were unsystematically affected by varying 
individual-level sample sizes. In this study, the total number 
of schools was 28 and the average number of students within 
the school level was approximately 41. The major concern 
here is the lack of a clear cut point determining how many 
samples need to be collected at any given level, and how 
many lower-level data are required within higher level studies. 
Although LPAMS has no serious limitation in relation to 
sample size, regression and ANOVA approaches under 
LPAMS analysis also require a large enough sample size to 
achieve the desired power level of significance testing. If not, 
there is no way to guarantee the stable result. Therefore, one 
may not be certain as to whether the estimator is estimating a 

meaningful value. Lastly, high correlations between measured 
variables may yield problematic test results on parameter 
estimates of LGM and HLM methods. This multicollinearity 
would cause inflated standard error estimates leading to 
inflating the type II error rate, especially for covariance 
structure analysis. Vasu and Elmore (1975) indicate that 
violation of the assumption of normality coupled with the 
condition of multicollinearity results in large standard errors 
in the sampling distributions of the standardized coefficients. 
According to the results of Grewal, Cote, and Baumgartner 
(2004), when multicollinearity is extreme, type II error rates 
can be unacceptably high, being greater than 80% in cases 
where the correlations are greater than .80. In this study, the 
ranges of correlations in student and school levels were 
respectively .82 to .91 and .88 to .97. Under these data 
abnormalities, LGM and HLM may be differentially sensitive. 
Fortunately, it may be anticipated that the assumption of 
multivariate normality did not greatly affect the test results. 
The ranges of univariate skewness and kurtosis of variables 
were respectively .043 to .122 and -.045 to -.207, with the 
value of Mardia-based Kappa (mulitivariate normality test) 
tending to zero (.102) 

From a statistical point of view, these results make it 
difficult to select a single most appropriate modeling 
technique. Although applicability of LGM would be limited 
under several statistical conditions (e.g., multicollinearity, 
small sample size, multivariate nonnormality), it has a more 
flexible array of possible covariance structures for modeling 
random effects and residuals (Rovine & Molenaar, 1998). 
Additionally, LGM is able to model and comparatively 
evaluate a broader array of growth functions (du Toit & 
Cudeck, 2001). HLM is less likely to be associated with 
estimation problems (i.e., difficulty in obtaining convergence 
of the estimation procedure) and efficiently handles the 
unbalanced hierarchical data structure. However, this 
hierarchical modeling technique also shares most of the 
statistical limitations of LGM. LPAMS is an integrated 
technique for exploring developmental growth trends (e.g., 
systematic and directional growth) as well as exploring 
change patterns (e.g., oscillation between ups and downs) that 
are not growth in nature (Ding, Davison, & Petersen, 2005). 
In particular, if a study includes many time points (e.g., more 
than 7 time points) and more than two growth dimensions 
require change detection, LPAMS must be a useful technique. 
Thus, it is widely applicable to various longitudinal studies 
including academic achievement growth and psychological 
change (e.g., mood change per day). However, as discussed 
above, the homogeneous error variance assumption may be 
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easily violated in real circumstance and the violation of this 
assumption threatens the validity of statistical inferences. 

Lastly, several other research conditions could limit the 
findings of this study being able to be more widely 
generalized. First, the results of this analysis may not be 
applicable when growth trend shows a nonlinear change. 
Second, though the repeated measured variables tend to be 
highly correlated, the cross-time correlation pattern in this 
study is extraordinary high (.80 to .90) for much educational 
and psychological data. Unlike LPAMS, LGM and HLM 
function oddly at this level of abnormality of data. Thus, if 
lower correlations between variables are obtained, test results 
may be different. Related to this issue, further longitudinal 
study should examine the unique and combined effects of 
varying sample sizes at within (e.g., student level) and 
between (e.g., school level) measures and modeling diverse 
growth structures, as well as a changing degrees of 
nonnormality and of correlations between observed variables 
for each growth method.  

 
 

Conclusion 
 
This study suggests that applied researchers should select 

appropriate growth modeling techniques, depending on their 
research questions and circumstances. If one is interested in 
each individual growth rate, LPAMS is appropriate. In 
addition, since LPAMS does require a small number of 
statistical assumptions, it would be able to provide reasonable 
test results under a diverse range of adverse research 
conditions (e.g., multicollinearity, multivariate nonnormality, 
etc). Being flexible and efficient in terms of technical and 
structural aspects, LGM is deemed preferable for large sample 
based multilevel studies (e.g., national level studies) and for 
longitudinal research involving heterogeneity of error 
variance across time points. HLM would be superior to other 
growth techniques, in particular in unbalanced time-spacing 
data structure and where dependency among observations is 
observed. Significantly, when the modeling techniques yield 
equivocal results, especially in terms of statistical testing of 
variance and covariance estimates due to the imposition of 
differing statistical estimation techniques and assumptions, 
researchers should be careful when interpreting the inter- and 
intra-variability levels and the relationship between initial 
scores and true gains. The recommendation herein is to 
examine whether the variances of measurements change over 
time (e.g. increase and/or decrease), or remain parallel. If the 
trends of variances decrease over time, this may indicate that 

individual variability has decreased, and that the initial scores 
tended to be negatively related to growth rates. On the other 
hand, where variances increase over time, the individual 
differences may appear to have increased, and the relationship 
between initial and growth factors have exhibited the 
tendency to be positively related. While researchers remain in 
need of performing statistical tests of covariance parameter 
estimate, this descriptive information is necessary to 
understand the general trends in the data, as well as offering 
helpful advice in determining the most appropriate growth 
parameter estimates.  

 
 

--------------------------------------------------------------------------- 
Notes 
 
1. This work was supported by BK21 Academic Leadership 

Institute for Competency-based Education Reform, 
Department of Education at Seoul National University. 

2. Simply, maximum likelihood technique is to find a parameter 
(θ ) that maximizes the sample likelihood (i.e., make the 
observed data most likely). Suppose that we collected data 
(measurements y) from the population. Probability of y given 
θ  is normalized probability density ( { }∫ θ|yp dy = 1) of y 
as a function of parameter θ , then the parameter θ  can be 
estimated by joint probability density for the n measurements 
y: 

∏
=

=
n

i
iypyL

1

)|()|( θθ  

This )|,.....,,()|( 21 θθ nyyyLyL =  is called likelihood 
function. Maximizing L by varying θ  amounts to 
interpreting L as function of θ , given the measurements y. 

3. Compared with the hierarchical Linear Modeling (HLM), the 
within-level analysis is referred to as level-1 and level-2. The 
between-level analysis is indicated as level-3. 

4. Euclidean distance is to measure the ordinary distance 
between two points. In longitudinal study, these points 
become time points, and the proximity measure for each 
possible pair of time points (t, 't ) is a squared proximity 

distance measure, 2
'tt

δ , computed from the raw data as 

follows:  
∑ −= 2

)()(
2
' )()/1( 'titiitt yyiδ  

Thus, in the matrix of squared Euclidean distance, all main 
diagonal values should be equal to zero and off diagonal 
values indicates the distances among time points. In the case of 
covariance matrix, the main diagonal and off diagonal values 
respectively notes variance and covariance.  
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