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My secondary school mathematics students have often reported to me

that quadratic relations are one of the most conceptually challenging

aspects of the high school curriculum. From my own classroom experi-

ences, there seemed to be several aspects to the students’ challenges. Many

students, even in their early secondary education, have difficulty with basic

multiplication table fact retrieval. Difficulty retrieving multiplication facts

directly influences students’ ability to engage effectively in factorisation of

quadratics, since factorisation is a process of finding products within the

multiplication table. Finally, students also find it challenging to recognise

and understand varied representations of the same quadratic relationship. 

In my own classroom, I had explored various pedagogical strategies in

order to mediate for the challenges that I have outlined — everything from

rehearsal to real world applications. However, I felt that my pedagogical

efforts lacked the necessary insight on how the brain creates memory and

felt that my pedagogical directions might be enhanced with this knowledge.

Therefore, in order to construct my own classroom solutions, I turned to

cognitive science to assist me in better understanding the mechanisms of fact

retrieval. I surmised that problems with quadratic relations might potentially

be linked to the ways in which the brain constructs cognitive representations

and this knowledge might in turn inform my pedagogical decision making

as a classroom teacher. This article is a sharing of my investigation.

Linking cognitive science to pedagogy

To better understand the problems students experience with quadratic rela-

tions, I draw from cognitive science researchers, Phenix and Campbell (2001),

who suggest that order matters in the brain’s ability to retrieve numeric

facts. Their research is useful in understanding students’ problems with

factorisation and with identifying varied representations of the same quadratic

relationship. Before I detail their research, I begin with an overview of the kinds

of memory capabilities our brains have in order to situate why, as teachers

of mathematics, we need to pay attention to Phenix and Campbell’s claims. 

Unravelling student challenges 

with quadratics: 

A cognitive approach
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Making the right kind of mathematical memories 

Butterworth (1999) suggests that there are three types of memory our

brains can create. Long-term autobiographical memory stores events with

generalised timelines of when and where the events occurred. A student’s

memory of grade eight graduation is an example of long-term autobio-

graphical memory. 

Long-term semantic memory stores general knowledge not identified by

a timeline for when the event occurred. Multiplication facts, for example,

are stored in long-term semantic memory. Semantic, as in long-term

semantic memory, implies associations to specific memories or meanings.

In mathematics, semantic implies the ability to access certain knowledge

over other knowledge based upon context. I refer to this process as

“linguistic discrimination” — the ability to access one meaning over another

meaning from long-term semantic memory of mathematical text; i.e.,

symbolic, numeric, visual, graphic, etc. (Kotsopoulos, 2006).

Short-term memory stores information temporarily. This information, or

knowledge, may be lost if not eventually stored in long-term semantic

memory. Multiplication facts can, alternatively to long-term semantic

memory, be relinquished to short-term memory and thus lost to students

during, for example, factorisation. Our goal, as educators, is to structure

learning opportunities to ensure that mathematical facts and/or multiple

representations of mathematical objects are stored to long-term semantic

memory and are, thus, potentially accessible to students in the form of prior

learning. 

Therefore, how do we, as teachers, create learning opportunities that

facilitate long-term semantic mathematical memories? Furthermore, how

do we teach students to discriminate linguistically between meanings and

access the appropriate long-term semantic memory? I turn here to the

distinction between two different types of mathematical long-term semantic

memories — that of “procedural knowledge” or “conceptual knowledge.” The

distinction between the two might be useful understanding how to occasion

certain long-term semantic memories over others.

Simply said, conceptual knowledge refers to deeper understanding of

mathematical relationships beyond computations, while procedural knowl-

edge is associated with calculations and algorithm use (Boaler, 1998;

Hiebert & Carpenter, 1992). Procedural knowledge that is in long-term

semantic memory allows one to perform mathematical computations effec-

tively and efficiently. Conceptual knowledge is deeper and enables an

individual to question whether findings make sense, and develop, if neces-

sary, procedural strategies from other existing strategies in long-term

semantic memory, when needed. 

The debates concerning procedural versus conceptual knowledge have

been extensive in mathematics education (Hiebert & Lefevre, 1987). Some

researchers hypothesise that conceptual knowledge builds procedural

fluency (Haapasalo & Kadijevich, 2000; 1987). While others propose that

conceptual knowledge only follows from procedural competency — students

need to know the basic facts before they can make sense of more complex

mathematical problems (Davis, Gray, Simpson, Tall, & Thomas, 2000). Still

others claim that there does not need to be a divide between procedural and
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conceptual knowledge, a one or the other approach to learning mathe-

matics, in that one can and does support the other (Berger, 2004;

Rittle-Johnson, Czarnocha & Baker, 2002). 

The position I take most closely follows the last. I extend this position to

say that, as teachers, we need to make intentional and informed decisions

about the choices we make in teaching. This may imply that in some

instances procedural knowledge may be emphasised more heavily (i.e.,

basic fact retrieval, multiplication, etc.) than conceptual knowledge, but not

to the exclusion of conceptual knowledge. For example, in the case of multi-

plication, it is useful for students to have an understanding of repeated

addition as the conceptual underpinnings of basic multiplication — partic-

ularly for when long-term semantic memory fails. However, as teachers, we

understand how timely this can be when students resort to repeated addi-

tion in order to multiply. Therefore, in the case of number facts, procedural

knowledge is important.

Long-term semantic memory: Order matters

Much insight can be gained in mathematics education from the cognitive

sciences regarding our brains. One such example of this can be seen in

Phenix and Campbell’s (2001) research that considered the brain’s function

with respect to numeric fact retrieval. The intent of their study was to test

whether numeric fact retrieval is order specific. For example, does 3 × 5

access the same cognitive representation as 5 × 3? Their results showed

that order did matter! That is, 3 × 5 does not access the same cognitive

representations as 5 × 3, despite the fact that the operands and the results

are the same.

Phenix and Campbell’s (2001) findings suggested to educators that when

students learn the multiplication tables both 3 × 5 and 5 × 3 needed to be

understood independently of the each other, rather than the latter as simply

a commuted form of the former. Patterning activities that highlight the

commutative property for multiplication are common in the early develop-

ment of students’ conceptual knowledge of multiplication tables and

multiplicity. One example of this is the multiplication table itself, often used

as a tool to demonstrate to students how half

of the table is simply a replica of the other

half (see Table 1). However, given that order

does matter, patterning (and assumptions

regarding a student’s ability to recognise

patterns) requires more careful contempla-

tion on the part of educators if our goal is to

reach students’ long-term semantic memory.

This is a prime case for ensuring both proce-

dural and conceptual understanding. The

emphasis on procedural understanding,

however, must be organised around two

separate multiplication facts rather than two

related facts, given that order does matter. In

other words, when students see these prob-

× 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

Table 1. Multiplication table.
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lems, 3 × 5 and 5 × 3, and engage in linguistic discrimination, different long-

term semantic memory is being accessed. 

We now move to quadratics; why then do students experience difficulty

in factoring quadratics? What is it that makes factoring such a formidable

task? Given that the factoring of quadratics is the writing of polynomials as

a product of polynomials, students need to have both a strong conceptual

understanding of multiplication of polynomials as well as the procedural

knowledge to retrieve basic multiplication facts effectively. It is useful for

students to have conceptual knowledge of how products of terms relate to

one another (i.e., exponent laws, addition of like terms, etc.). With this

understanding, students can do the necessary procedural steps in factori-

sation but also step back and ask themselves if the results make sense.

Astonishingly, many secondary mathematics students struggle with

basic multiplication table fact retrieval, negative factors, and multiple

factors. Worth visiting is Brownell’s (1956) article discussing the underlying

coherence that computational competency affords a student in mathe-

matics. Although for some students multiplication facts are immediate and

habitual, for others the facts are inaccessible without a calculator. This may

make factoring simple quadratics (ax2 + bx + c, a = 1) a considerable chal-

lenge while non-simple quadratics (ax2 + bx + c, a ≠ 1) become almost

impossible. In both cases, students need to rely on procedural knowledge

(e.g., multiplication facts) and conceptual understanding (e.g., the relation-

ship between a, b and c). One reason, already already alluded to, that

students experience challenges, could be in the ways in which the multipli-

cation facts were initially learned (Ben-Yehuda, Lavy, Linchevski & Sfard,

2005). 

Varied representations: Order still matters!

As I have already discussed, many grade 10 students are challenged when

having to recall basic multiplication facts. Factoring of quadratics requires

students to be able to quickly find factors of one number that also add to

find another. This can be a drawn-out task if multiplication facts are not

immediate. Drawing from cognitive science, I have suggested that one factor

that might have influenced early storage of multiplication facts is the ways

in which these facts were taught (i.e., false assumptions about patterning

in that order does matter) and that these might have impacted whether or

not the facts were stored in long-term semantic memory. 

Order continues to matter in basic factorisation when it comes to

quadratics. Order can be taken to mean the ordering of mathematical text

in specific operand order, as was seen in Phenix and Campbell’s work

(2001). Order can also be taken to mean the general form in which mathe-

matical information is presented. There are three forms of quadratic

relations explored in many curriculums (e.g., National Council of Teachers

of Mathematics (NCTM), 2000; Ontario Ministry of Education (OME), 2005).

These are: 

1. factored form, y = a(x – r)(x – s)

2. standard form, y = ax2 + bx + c

3. vertex form, y = a(x – h)2 + k.
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When quadratic relations are presented as variations of the above forms,

students can experience conceptual difficulties; that is, misunderstanding

by the student may occur when the form or order of the above relations

changes, thus limiting their ability to access the appropriate long-term

semantic memory.

Take, for example, the following question: x2 + 3x + 1 = x + 4. I have found

in my teaching that when students are asked to factorise when solving this

equation, they often experience challenges because the question is not in

standard form, or, in other words, in an order that is familiar to them. In

this other example, y = (x – 1)(2 – x), students often experience challenges

understanding this factored-form of the quadratic to be a non-simple

quadratic. Often, the graphical representation is opening in the incorrect

direction (up rather than down). The order of the x in the second bracket

contributes to this dissonance. 

The preceding examples suggest that commuted understandings cannot

be left to chance in that order, as in form, potentially matters here as well.

The examples from the previous paragraph should not be viewed as merely

extensions of a particular form, but rather, as new forms unto themselves.

As such, these new forms have to be made explicit to students. In this case,

building conceptual understanding may support students in linking the

new forms to prior cognitive representations. For example, students should

be encouraged to make connections and broader multiple representations

of quadratics to explicate equivalence of algebraic representations as part of

building greater conceptual understanding — graphical representations

here would be very useful (i.e., seeing that various algebraic forms yield the

same graphical representation).

Classroom implications

In our teaching, we need to pay careful attention to ways in which the brain

creates long-term semantic meaning. Conceptual knowledge alone of multi-

plication may not be sufficient to support students in quick fact retrieval.

Students need to have procedural fluency and, in the case of multiplication,

we see that this means that some of the patterning strategies used to facil-

itate conceptual understanding may be ineffective (Phenix & Campbell,

2001). That students experience difficulties with basic multiplication facts

in secondary school suggests that there is a pressing need for a blending of

procedural and conceptual knowledge through varied learning experiences

for students, with careful attention to how our brains create long-term

semantic memory. Assuming that conceptual knowledge will build proce-

dural knowledge in multiplication fact retrieval, for example, may lead to

some problems, particularly if the conceptual knowledge is structured

around patterns, given that order does matter. I propose that order is also

instrumental in the problems that students have with varied representa-

tions of the same quadratic relations.

Cognitive science gives us a unique lens from which to view our practices

in the classroom. Understanding how the brain organises mathematical

objects might help optimise students’ chances for success. I intentionally

chose to look more closely at how the brain works in coming to understand
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students’ ability to retrieve facts. The cognitive model is one that could be

more useful to education. It is indeed a fascination of mine. As educators,

our work is to create learning opportunities that are mindful to how the

brain organises material so that long-term semantic memories are occa-

sioned. 
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Crosses are placed on a 3 × 3 grid alternately by two
players with the rule that no three crosses can be in a
line. If the winner is the one that puts the last cross on
the grid, investigate how both players can win. 
What are the options on a 4 × 4 grid?




