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Creativity: The Essence of Mathematics

Eric L. Mann 
Purdue University

For the gifted mathematics student, early mastery of concepts and skills in the math-
ematics curriculum usually results in getting more of the same work and/or mov-
ing through the curriculum at a faster pace. Testing, grades, and pacing overshadow 
the essential role of creativity involved in doing mathematics. Talent development 
requires creative applications in the exploration of mathematics problems. Traditional 
teaching methods involving demonstration and practice using closed problems with 
predetermined answers insufficiently prepare students in mathematics. Students leave 
school with adequate computational skills but lack the ability to apply these skills in 
meaningful ways. Teaching mathematics without providing for creativity denies all 
students, especially gifted and talented students, the opportunity to appreciate the 
beauty of mathematics and fails to provide the gifted student an opportunity to fully 
develop his or her talents. In this article, a review of literature defines mathematical 
creativity, develops an understanding of the creative student of mathematics, and dis-
cusses the issues and implications for the teaching of mathematics.

“The moving power of mathematical invention is not reasoning but 
imagination.”—Augustus de Morgan (1866, p. 132)

Background

In 1980, the National Council of Teachers of Mathematics (NCTM) 
identified gifted students of mathematics as the most neglected seg-
ment of students challenged to reach their full potential. In 1995, the 
NCTM task force on the mathematically promising found little had 
changed in the subsequent 15 years (Sheffield, Bennett, Beriozábal, 
DeArmond, & Wertheimer, 1999). The definition of mathematical 
giftedness varies depending on the identification tools used and the 
program offered. Regardless of the definition used, finding students 
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with mathematical giftedness is a challenge for both educators and 
society. Often giftedness in mathematics is identified through class-
room performance, test scores, and recommendations. Yet, research 
suggests that a high level of achievement in school mathematics is not 
a necessary ingredient for high levels of accomplishment in math-
ematics (Hong & Aqui, 2004; Mayer & Hegarty, 1996; Pehkonen, 
1997; Sternberg, 1996). This apparent detachment between school 
mathematics and mathematical accomplishments indicates that some 
talented students are overlooked by current practices in school.

Polya (1962) defined mathematical knowledge as information 
and know-how. Of the two, he regarded know-how as the more 
important, defining it as the ability to solve problems requiring 
independence, judgment, originality, and creativity. A gifted student 
of mathematics possesses all of these characteristics and needs the 
opportunity to use them when solving challenging problems. Calls 
for renewed emphasis on mathematics education accompany each 
new round of published test results, but often such efforts stress 
remediation or additional practice rather than the development of 
a mathematical frame of mind. Frequently, all students, including 
those who met or exceeded the test goals, simply receive more of the 
same methods of instruction that yielded the results under exami-
nation. If mathematical talent is to be discovered and developed, 
changes in classroom practices and curricular materials are necessary. 
These changes will only be effective if creativity in mathematics is 
allowed to be part of the educational experience. 

The visionary classrooms described by leaders in the NCTM 
enable students to 

confidently engage in complex mathematical tasks . . . draw 
on knowledge from a wide variety of mathematical topics, 
sometimes approaching the same problem from different 
mathematical perspectives or representing the mathematics 
in different ways until they find methods that enable them 
to make progress. (NCTM, 2000, p. 3)

For many adults, this vision is unlike the math classrooms they 
remember from their youth. Time was spent learning from the mas-
ter where the teacher demonstrated a method with examples, and 
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the students practiced with similar problems (Pehkonen, 1997). For 
these adults, the concept of mathematics is of “a digestive process 
rather than a creative one” (Dreyfus & Eisenberg, 1996, p. 258). 
However, mathematics is not a fixed body of knowledge to be mas-
tered but rather a fluid domain, the essence of which is the creative 
applications of mathematical knowledge in the solving of problems 
(Poincaré, 1913; Whitcombe, 1988).

Defining and Measuring Mathematical Creativity

An examination of the research that has attempted to define math-
ematical creativity found that the lack of an accepted definition 
for mathematical creativity has hindered research efforts (Ford & 
Harris 1992; Treffinger, Renzulli, & Feldhusen, 1971). Treffinger, 
Young, Shelby, and Shepardson (2002) acknowledged that there are 
numerous ways to express creativity and identified more than 100 
contemporary definitions. Runco (1993) described creativity as a 
multifaceted construct involving “divergent and convergent think-
ing, problem finding and problem solving, self-expression, intrin-
sic motivation, a questioning attitude, and self-confidence” (p. ix). 
Haylock (1987) summarized many of the attempts to define creativ-
ity. One view “includes the ability to see new relationships between 
techniques and areas of application and to make associations between 
possibly unrelated ideas” (Tammadge, as cited in Haylock, 1987, p. 
60). The Russian psychologist Krutetskii characterized creativity 
in the context of problem formation (problem finding), invention, 
independence, and originality (Haylock, 1987; Krutetskii, 1976). 
Others have applied the concepts of fluency, flexibility, and origi-
nality to mathematics (Haylock, 1997; Jensen, 1973; Kim, Cho, 
& Ahn, 2003; Tuli, 1980). In addition to these concepts, Holland 
(as cited in Imai, 2000) added elaboration (extending or improving 
methods) and sensitivity (constructive criticism of standard meth-
ods). Torrance (1966) offered the following definition of creativity:

Creativity is a process of becoming sensitive to problems, 
deficiencies, gaps in knowledge, missing elements, dishar-
monies, and so on; identifying the difficult; searching for 
solutions, making guesses or formulating hypotheses about 
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the deficiencies; testing and re-testing these hypotheses and 
possibly modifying and re-testing them; and finally commu-
nicating the results. (p. 8)

In developing an operational definition of mathematical creativity, 
Singh (1988) applied Torrance’s definition of creativity to the for-
mulation of cause and effect hypotheses in mathematical situations. 

Balka (1974) introduced criteria for measuring mathematical 
creative ability. He addressed both convergent thinking, character-
ized by determining patterns and breaking from established mind-
sets, and divergent thinking, defined as formulating mathematical 
hypotheses, evaluating unusual mathematical ideas, sensing what is 
missing from a problem, and splitting general problems into specific 
subproblems. In reviewing Balka’s criteria, breaking from established 
mindsets was a defining feature in the efforts of others to understand 
the creative mathematician. Haylock (1997) and Krutetskii (1976) 
believed that overcoming fixations was necessary for creativity to 
emerge. Both, like Balka, focused on the breaking of a mental set that 
places limits on the problem solver’s creativity. Limits are also estab-
lished when creativity and systematic applications are confused. In 
an earlier work, Haylock (1985) discussed the difference between 
creativity and being systematic in mathematical problem solving. 
By applying learned strategies, a student can systematically apply 
multiple methods to solve a problem but never diverge into a cre-
ative strategy, never exploring areas outside the individual’s known 
content-universe. To encourage the development of mathematical 
creativity, educators need to enable creative exploration and reward 
students who seek to expand their content-universe. 

The Essence of Mathematics

The essence of mathematics is thinking creatively, not simply arriving 
at the right answer (Dreyfus & Eisenberg, 1966; Ginsburg, 1996). In 
seeking to facilitate the development of talented young mathemati-
cians, neglecting to recognize creativity may drive the creatively tal-
ented underground or, worse yet, cause them to give up the study 
of mathematics altogether. Hong and Aqui (2004) studied the dif-
ferences between academically gifted students who achieved high 
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grades in school math and the creatively talented in mathematics, 
students with a high interest, who were active and accomplished 
in math but not necessarily high achieving in school math. As they 
were examining differences, their study did not include students with 
strengths in both areas. Hong and Aqui found significant differences 
in cognitive strategies used by the two groups with the creatively 
talented being more cognitively resourceful. Neither group of stu-
dents should be neglected, yet Ching (1997), a supervisor of teach-
ing practices, found hidden talent to be rarely identified by typical 
classroom practices. Traditional tests to identify the mathematically 
gifted, such as the commercially available achievement tests or state 
assessments, do not identify or measure creativity (Kim et al., 2003) 
but often reward accuracy and speed. These tests identify students 
who do well in school mathematics and are computationally fluent 
(Hong and Aqui’s academically talented), but neglect the creatively 
talented in mathematics. Brody and Mills (2005) report that the tal-
ent search models of identification have been proven to be valid as 
a predictor of academic achievement, as well as achievement later in 
life for those students who qualify. Services and opportunities pro-
vided to these students match the identification system used and are 
appropriate for their needs. These students typically have supportive 
families and advantaged homes (Brody & Mills) and are invited to 
participate in the search based on their academic performance. Hong 
and Aqui’s research supports the need to look deeper for mathemati-
cal talent. Encouraging mathematical creativity in addition to com-
putational fluency is essential for children to have a productive and 
enjoyable journey while developing a deep conceptual understand-
ing of mathematics. For the development of the mathematical talent, 
creativity is essential.

Mathematical creativity is difficult to develop if one is lim-
ited to rule-based applications without recognizing the essence of 
the problem to be solved. Köhler (1997) discussed an experiment 
by Hollenstein in which one group of children worked on a math 
exercise presented in the traditional method. These problems were 
complete or closed in that they were constructed so that a single cor-
rect answer existed (Shimada, 1997). A second group was given the 
conditions on which the first group’s exercise were based and was 
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asked to develop and answer problems that could be solved using 
calculations. The open-ended nature of the task given to the sec-
ond group did not limit them to a set number of problems. This 
group created and answered more questions than were posed to the 
first group, calculated more accurately, and arrived at more correct 
results. Researchers at Japan’s National Institute for Educational 
Research conducted a 6-year research study that evaluated higher 
order mathematical thinking using open-ended problems (problems 
with multiple correct answers). In a round-table review of the study, 
Sugiyama, from Tokyo Gakugei University, affirmed this approach 
as a means to allow students to experience the first stages of math-
ematical creativity (Becker & Shimada, 1997).

Doing What Mathematicians Do

Doing what mathematicians do as a means of developing math-
ematical talent (as opposed to replication and practice) is consistent 
with the work at The National Research Center for the Gifted and 
Talented (Reis, Gentry, & Maxfield, 1998; Renzulli, 1997; Renzulli, 
Gentry, & Reis, 2003, 2004). Emphasis is placed on creating authen-
tic learning situations where students are thinking, feeling, and 
doing what practicing professionals do (Renzulli, Leppien & Hays, 
2000). The fundamental nature of such authentic high-end learning 
creates an environment in which students apply relevant knowledge 
and skills to the solving of real problems (Renzulli et al., 2004). 

Solutions to real problems also entails problem finding, as well 
as problem solving. Kilpatrick (1987) described problem formula-
tion as a neglected but essential means of mathematical instruction. 
Real-world problems are not presented in a textbook or by a teacher. 
They are ill-formed and require one to employ a variety of methods 
and skills. In addition to equations to solve and problems designed 
to converge on one right answer, students need the opportunity to 
design and answer their own problems. In his Creative Mathematical 
Ability Test, Balka (1974) provided the participants with math-
ematical situations from which they were to develop problems. 
Mathematical creativity was measured by the flexibility, fluency, and 
originality of the problems the participants constructed. By working 
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with these types of mathematical situations, students can be encour-
aged to use their knowledge flexibly in new applications. Flexible 
applications of knowledge require more than knowledge of acquain-
tance, or a simple knowledge of, which is the entry level of knowledge 
identified by William James (as cited in Renzulli et al., 2000; Taylor 
& Wozniak, 1996). James considered conceptual knowledge to be 
a higher level of knowledge. He referred to this level as knowledge 
about, a way of knowing that is based on a continuity of experiences 
(Taylor & Wozniak). Conceptual knowledge lies within authentic 
mathematical experiences provided to students rather than simple 
replication of demonstrated methods. 

Factual and procedural knowledge is necessary to develop profi-
ciency in mathematics, but research suggests that conceptual under-
standing is equally as important (Bransford, Brown, & Cocking as 
cited in NCTM, 2000, p. 21; Schoenfeld, 1988). Davis, Maher, and 
Noddings (1990) listed four types of mathematical experiences that 
children need in the classroom. The first experience is characterized 
by teacher demonstration, followed by student drill and practice. 
This type of experience is the most prevalent in the classroom but 
has limited usefulness in developing deep mathematical understand-
ing. In the report, All Students Reaching the Top, the National Study 
Group for the Affirmative Development of Academic Ability found 
that drill and practice may actually be working against the transfer 
of learning to applications not replicated by the drills (Learning 
Point Associates, 2004). Schoenfeld reported similar findings in his 
research in which he found that students fail to connect drill-and-
practice learning with real-world problems. 

To allow for a transfer of learning, students need more than 
drill and practice; they need to understand the mathematical con-
cepts beyond the practice exercises (Davis et al., 1990). Bassok and 
Holyoak (1989) conducted an experiment with 12 high-ability 
ninth-grade students in an accelerated scientific program to investi-
gate the transfer of learning between algebra and physics problems 
with the same underlying structure. Their results showed that 90% 
of the students who were trained to solve the physics problems were 
unable to make the transfer of learning to solve similar but unfamil-
iar algebra problems. However, 72% of the algebra students success-
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fully transferred their understanding of the mathematical concepts 
to solve the physics problems. The difference in transferability may 
have been compromised by the context of the problem-solving situa-
tions in which the students were trained (Learning Point Associates, 
2004), with the algebra students being able to recognize similarities 
in problem structure more readily. Davis et al. (1990) also described 
general readiness-building experiences designed to prepare students 
to recognize mathematical situations. Open-ended experiences also 
provide students opportunities to demonstrate their conceptual 
understanding. Both of these types of experiences lend themselves 
to the transfer of learning from classroom to real-word situations. 
Learning mathematics, therefore, involves much more than memo-
rizing arithmetical facts and mastering computational algorithms; it 
entails incorporating experiences and conceptual understanding to 
solving authentic mathematical problems

The Role of Risk Taking in Mathematics

The new open-ended assessments used by many state Department 
of Education officials often place little value on creative solutions. 
Problems with test scoring in Connecticut’s 2003–2004 mastery 
tests illustrate some of the issues where strict guidelines focusing on 
accuracy are the norm. “There is an art to scoring . . . there is subjec-
tivity . . . our work is to remove as much of that variable as possible” 
according to Hall, CTB/McGraw-Hill’s director of hand-scoring 
(Frahm, 2004, p. A1). While accuracy is important, strict empha-
sis on accuracy when assessing a child’s conceptual understanding of 
mathematics discourages the risk taker who applies her or his knowl-
edge and creativity to develop original applications in solving a prob-
lem (Haylock, 1985). Such an individual would be in the company 
of Poincaré, Hadamard, and Einstein, all eminent scientists and 
mathematicians who confessed to having problems with calculations 
(Hadamard, 1945). 

Mayer and Hegarty (1996) reported converging evidence that 
students leave high school with adequate skills to accurately carry 
out arithmetic and algebraic procedures but inadequate problem-
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solving skills to understand the meaning of word problems. A good 
mathematical mind is capable of flexible thought and can manipu-
late and investigate a problem from many different aspects (Dreyfus 
& Eisenberg, 1996). Procedural skills without the necessary higher 
order mathematical thinking skills, however, are of limited use in our 
society. There is little use for individuals trained to solve problems 
mechanically as technology is rapidly replacing tedious computa-
tional tasks (Köhler, 1997; Sternberg, 1996). Often the difference 
between the errors made by eminent mathematicians and students 
of mathematics is a function of their insight into and appreciation of 
mathematics, not their computational skills (Hadamard, 1945). 

With the increased emphasis on accountability from the No 
Child Left Behind Act of 2001, teachers are under even more 
pressure to teach to the test rather than to work toward develop-
ing in their students a conceptual understanding of mathematics. 
Encouraging students to take risks and look for creative applications 
reintroduces variability in scoring that assessment teams are work-
ing to eliminate. Discouraging risk taking limits student exposure 
to genuine mathematical activity and dampens the development of 
mathematical creativity (Silver, 1997). For substantial and permanent 
progress in a child’s understanding of mathematics, an appreciation 
of “the difficult-beautiful-rewarding-creative view of mathematics” 
(Whitcombe, 1988, p. 14) must be developed. However, rather than 
developing an appreciation for mathematics by focusing on qualities 
of mathematical giftedness, teachers who only emphasize algorithms, 
speed, and accuracy provide the creative student negative reinforce-
ment. Thus, many talented students do not envision themselves as 
future mathematicians or in other professions that require a strong 
foundation in mathematics (Usiskin, 1999). Failing to encour-
age creativity in the mathematics classroom denies all children the 
opportunity to fully develop their mathematical understanding. For 
the mathematically talented, lack of creativity may delay, or worse 
yet, prevent the realization of their potential to contribute to new 
understandings of the world around us through the advancement of 
mathematical theory.
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The Enjoyment Factor

In a recent undergraduate course on the teaching of mathemat-
ics, future elementary school teachers were asked to describe their 
most memorable childhood experience in school mathematics. The 
overwhelming majority described an unpleasant experience (Mann, 
2003). “We have known for some years now . . . that most children’s 
mathematical journeys are in vain because they never arrive anywhere, 
and what is perhaps worse is that they do not even enjoy the journey” 
(Whitcombe, 1988, p. 14). It is difficult to develop an understand-
ing of mathematics if the effort to inspire this knowledge is uninter-
esting. Confirming this, Csikszentmihalyi, Rathunde, and Whalen 
(1993) found that enjoyment is central to capturing a child’s interest 
and developing his or her talent. Using Amabile’s (1989) ingredients 
of creativity, Starko (2001) also discussed the role of interest in intrin-
sic motivation for the development of creativity. The greater a child’s 
intrinsic motivation, the greater the likelihood of creative applica-
tions and discoveries. Yet, intrinsic motivation is highly dependent 
on social environment (Amabile, 1989) and the social environment 
of a classroom is dependent on the teacher. When teachers do not 
look beyond the wrong answer, they convey the belief that math is 
divided into right and wrong answers (Balka, 1974; Ginsburg, 1996) 
and may reject creative applications, fostering a classroom environ-
ment that discourages developing creativity. 

Time and Experience

Creativity needs time to develop and thrives on experience. Drawing 
from contemporary research, Silver (1997) suggested, “creativity is 
closely related to deep, flexible knowledge in content domains; is 
often associated with long periods of work and reflection rather than 
rapid, exceptional insight; and is susceptible to instructional and 
experiential influences” (p. 75). Poincaré’s (1913) essay on mathe-
matical creation also discussed the need for reflection. He described 
his discovery of the solution to a problem on which he had worked 
for a considerable amount of time arriving as a sudden illumination 
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as he stepped onto a bus on a geologic excursion. This illumination 
was “a manifest sign of long, unconscious prior work . . . which is 
only fruitful, if it is on the one hand preceded and on the other hand 
followed by a period of conscious work” (p. 389). This period of 
incubation appears to be an essential aspect of creativity requiring 
inquiry-oriented, creativity-enriched mathematics curriculum and 
instruction (Silver, 1997). Whitcombe (1988) described an impov-
erished mathematics experience as one in which instruction only 
focuses on utilitarian aspects of mathematics and is without appro-
priate interest-stimulating material and time to reflect needed by the 
student. Such experiences deny creativity the time and opportunities 
needed to develop. 

Hong and Aqui’s (2004) division of mathematical talent into the 
academically gifted and creatively talented is critical in the consid-
eration of talent development. The academically gifted student may 
excel in the classroom by demonstrating high achievement, or “school-
house giftedness,” that is valued in traditional educational settings. 
These students’ abilities remain relatively stable over time (Renzulli, 
1998). Those academically gifted in mathematics are able to acquire 
the skills and methodologies taught often at a much more rapid pace 
than for less able students and perform well on standardized test-
ing. The academically gifted usually demonstrate their mastery of the 
utilitarian aspects of mathematics, but neither speed nor accuracy 
in computation or the analytical ability to apply known strategies 
to identified problems are measures of creative mathematical talent. 
Hadamard (1945) described individuals he labeled “numerical cal-
culators” as “prodigious calculators—frequently quite uneducated 
men—who can very rapidly make very complicated numerical calcu-
lations . . . such talent is, in reality, distinct from mathematical abil-
ity” (p. 58). Thus, it is possible to be considered academically gifted 
in mathematics but lack creative mathematical talent.

While speed of information processing is important in testing 
situations in which students’ mathematical thinking is assessed using 
standardized tests, it is less important when a mathematician spends 
months or even years trying to work out a proof (Sternberg, 1996). 
Although current tests of number or numerical facility emphasize 
speed with stress imposed by severe time limits and accountability 
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on the accuracy of the solutions (Carroll, 1996), the next generation 
of mathematicians must be shown the “wellsprings of mathematics; 
creativity, imagination, and an appreciation of the beauty of the sub-
ject” (Whitcombe, 1988, p. 14). In an analysis of cognitive ability 
theory and the supporting psychological tests and factor analysis, 
Carroll noted that despite six to seven decades of work, the relation-
ships between the discrete abilities measured by psychometric tests 
and performance in mathematics remains unclear. Restricting the 
search for mathematical talent to the academically gifted who per-
form well on timed standards-based assessments denies opportuni-
ties to the creatively talented that go undiscovered because of lower 
levels of classroom achievement or limited educational experiences.

Understanding the Creative Student of Mathematics

NCTM’s task force on the mathematically promising (Sheffield et 
al., 1999) characterized our promising young mathematics students 
in light of their ability, motivation, belief (self-efficacy), and opportu-
nity/experience, all considered variables that must be maximized in 
order to fully develop a student’s mathematical talent. Davis (1969) 
considered developing creativity in students of mathematics in terms 
of three major parameters: attitudes, abilities, and techniques (meth-
ods of preparing and manipulating information). While 26 years 
separate these efforts, they offer similar recommendations. Skills 
with the techniques of the discipline develop only through oppor-
tunity and belief in one’s ability. Renzulli’s (1978, 1998) model of 
giftedness defines three learner attributes (above-average ability, task 
commitment, and creativity) in three overlapping rings signifying an 
interdependence of these qualities to produce giftedness. Of these 
three qualities, there are two (task commitment and above-average 
ability) that mirror Davis’ parameters. Overlaying the two models 
yields a conceptual framework in which mathematical creativity 
can be considered. The child possesses his or her innate ability that 
remains dormant if not developed with the appropriate challenges 
and experience. Teachers and parents must help develop task com-
mitment by creating opportunities for purposeful and meaningful 



Journal for the Education of the Gifted248

experiences, by fostering an understanding of techniques through 
instruction and modeling, and by establishing a creative environ-
ment that encourages risk taking and curiosity. 

If any of these elements are missing, creativity in mathemat-
ics may not develop. Classrooms in which teachers do not accept 
alternative views and in which the rote application of skills is valued 
will provide the world with students that only have the capability to 
apply techniques in known situations. These students will struggle 
when they encounter unknown situations in which originality, cre-
ativity, and problem solving are necessary. 

Underdeveloped Talent

One may wonder how many potential creative mathematicians are 
lost when weak analytical skills prevented them from progressing 
through the levels of mathematics offered in our educational sys-
tem. Limiting use of creativity in the classroom reduces mathematics 
to a set of skills to master and rules to memorize. Doing so causes 
many children’s natural curiosity and enthusiasm for mathematics 
to disappear as they get older, creating a tremendous problem for 
the mathematics educators who are trying to instill these very quali-
ties (Meissner, 2000). Sternberg (1996) referred to comments from 
mathematicians who suggest that:

. . . performance in mathematics courses, up to the college 
and even early graduate levels does not effectively predict 
who will succeed as a mathematician. The prediction failure 
is due to the fact that in math, as in most other fields, one can 
get away with good analytic but weak creative thinking until 
one reaches the highest levels of education. . . . . However, it 
is creative mathematical thinking that is the most important 
. . . (p. 313)

It is important that teachers work to develop mathematical creativity 
as the child begins his or her educational journey. Haylock (1997) 
suggests that the pupil’s mathematical experience and techniques 
limit their creative development. Yet, Hashimoto (1997) found that, 
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in general, most classroom teachers think there is only one correct 
answer and only one correct method to solve a mathematics prob-
lem. If taught that there is only one right answer, only one correct 
method, a student’s concept of mathematics as an application of 
mathematic techniques is reinforced. Köhler (1997) illustrated this 
point in a discussion with an elementary classroom teacher about 
a student who had arrived at the correct answer in an unexpected 
way: 

While going through the classroom, that pupil asked me 
[the teacher] whether or not his solution was correct. I was 
forced [italics added] to admit that it was. That is what you 
get when you don’t tell the pupils exactly what to do [italics 
added]. . . . The teacher now reproaches himself for not hav-
ing prevented this solution [italics added]. He is obviously 
influenced by an insufficient understanding of what is math-
ematics, by the image of school as an institution for stuffing 
of brains . . . (p. 88)

Teachers often encourage students to explore, question, interpret, 
and employ creativity in their studies of other disciplines such as lan-
guage arts, science, or the social sciences; yet, this example illustrates 
many teachers focus on the use of rules-based instruction for math-
ematics. If the instruction focuses on rote memorization rather than 
meaning, then the student will correctly learn how to follow a proce-
dure, and will view the procedure as a symbol-pushing operation that 
obeys arbitrary constraints. Without a conceptual understanding of 
the underlying concepts and principles necessary for creative appli-
cations, students may overgeneralize from “bits and pieces” of prior 
knowledge and apply procedures correctly in inappropriate problem 
situations arriving at computationally correct “wrong” answers (Ben-
Zeev, 1996). Students may gain computational skills, yet have little 
or incomplete understandings of the applications for which these are 
appropriate. Pehkonen (1997) suggested that the constant emphasis 
on sequential rules and algorithms may prevent the development of 
creativity, problem-solving skills, and spatial ability. The develop-
ment of mathematical creativity deserves the same emphasis offered 
to the creative development in other disciplines.



Journal for the Education of the Gifted250

Incorporating Creativity in the Teaching of Mathematics

Teachers must be prepared to appreciate the beauty and creativity 
of mathematics. They must explore the world of mathematics before 
they can help their students discover it. It is easy for teachers to forget 
the value of the struggle they may have encountered as they learned 
mathematics as children and fall into a teaching practice that involves 
demonstration by teacher and replication by the student (Pehkonen, 
1997). Yet, for students to experience the true work of mathemati-
cians, the struggle is necessary as they discover and apply mathematical 
theory to solve problems. Poincaré (1913) believed that true mathe-
maticians had an intuitive sense that guided them in creative applica-
tions of mathematics. Jensen (1973) referenced Bruner in describing 
a creative act as one that produces surprise only recognizable by those 
prepared to see it and explained “creativity demands readiness and 
understanding of the problem both by the producer [the student] and 
by those who would use and appreciate the creative act [the teacher]” 
(p. 22). It is therefore necessary for teachers of mathematics to have 
Poincaré’s appreciation for mathematics and a prepared mathemati-
cal mind to help students develop an understanding of the beauty of 
mathematics. It is also necessary for teachers to encourage the devel-
opment of mathematical creativity.

There is significant power in learning conceptually. This power 
comes from the ability to recombine and relate concepts in a variety 
of settings, as opposed to factual learning, which has applications 
within the circumstances as they exist (Skemp, 1987). Mathematics 
is a powerful tool that can be used at varying levels of complexity 
in almost every occupation. Yet, many students leave school dislik-
ing mathematics and with the belief that they just cannot do math. 
Whitcombe’s (1988) model of the mathematical mind is based on 
his belief that mathematical minds function efficiently when three 
aspects of mathematics are involved: algorithms (logical), creativity 
(intuitive), and beauty (speculative). Intuition and speculation func-
tion at a conceptual level, while algorithms are a rule-based applica-
tion of mathematics. Yet, “algorithms constitute the majority of the 
mathematical diet of many of our children, . . . [they are] the least 
important as machines can do it better and faster, . . . [they] are the 
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least important because they are boring,” (Whitcombe, p. 15) and 
they are the least important as they offer the student no sense of the 
structure of mathematics. Accuracy is important, but accuracy with-
out understanding is of minimal use. The right answer to the wrong 
problem is as potentially harmful on a construction site or in a hos-
pital ward as the wrong answer to the right problem. 

Crosswhite (1987) defined the process of “bottom line problem 
solving” and “bottom line teaching” as the unwritten game students 
and teachers play. The students patiently wait through the teacher’s 
lesson presentation knowing that, in the end, the preferred method 
of solving the problem will be presented. The student then becomes 
accountable only for a replication of the process with similar prob-
lems. Creativity plays no role in this kind of teaching and learning. 
To fully implement the changes needed in instruction, teacher edu-
cation programs must change. This is a long process, as the teachers 
of teachers must also make the shift. For current teachers, an under-
standing of the role of creativity in mathematics is an important first 
step, but curricular materials, classroom and administrative support, 
and training are all needed for progress to continue. 

The development of mathematical communications skills is nec-
essary for creativity to be recognized, appreciated, and shared. The 
impact on a creative student who thinks symbolically but is consis-
tently asked to explain in written or oral language may be significant 
because thoughts and understanding may be lost in the translation. 
When describing a characteristic of mental activity associated with 
creative mathematical thought, Sir Francis Galton said

It is a serious drawback to me in writing, and still more in 
explaining myself, that I do not so easily think in words as 
otherwise. It often happens that after being hard at work, 
and having arrived at results that are perfectly clear and sat-
isfactory to myself, when I try to express them in language I 
feel that I must begin by putting myself upon quite another 
intellectual plane. I have to translate my thoughts into a lan-
guage that does not run very evenly with them. I therefore 
waste a vast deal of time in seeking for appropriate words and 
phrases, and am conscious, when required on a sudden, of 
being often very obscure through mere verbal maladroitness, 
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and not through want of clearness of perception. That is one 
of the small annoyances of my life. (as cited in Hadamard, 
1945, p. 69)

Teachers who require each step of the problem to be written out, 
each answer justified both in spoken or written language, as well as 
in mathematical symbols, may not understand the processes used by 
creative, intuitive students. However, there are many stories of math-
ematical discoveries lost or delayed because the mathematician’s 
work was not effectively communicated. After Riemann’s death in 
1866, a brief note found in his papers dealing with the distribution 
of prime numbers has become the focus of the careers of many math-
ematicians. Riemann’s note simply stated “These properties of ζ(s) 
are deduced from an expression of it which, however, I did not suc-
ceed in simplifying enough to publish it” (as cited in Hadamard, p. 
118). The lack of any other references to his findings underscores the 
need for effective communication skills. While the ability to explain, 
justify, and defend one’s work is important, for most it is a learned 
skill. In language arts, children are taught how to write persuasive 
essays or creative short stories and how to evaluate the writing of 
others; a similar investment to develop mathematical communica-
tion skills is necessary for the expression of mathematics. 

Teaching practices need to shift to a more balanced applica-
tion of Whitcombe’s (1988) model of the mathematical mind that 
recognizes creativity and the beauty of mathematics, as well as the 
rule-based algorithms that dominate most mathematics classrooms. 
Rather than overemphasize rules, algorithms, and convergent think-
ing to produce a single right answer, instruction should center on 
mathematical thought. Dreyfus and Eisenberg (1996) found that 
mathematical thought is more than absorbing some piece of math-
ematics or solving some mathematical problem: “it is closely associ-
ated with an assessment of elegance” (p. 255). Terms such as beauty 
and elegance are as difficult to define as creativity, yet each creates 
a vision of mathematics as extending beyond algorithms. “In math-
ematics, facts are less important than in other domains; on the other 
hand, relationships between facts, relationships between relation-
ships and thus structure, are more important than in other domains” 
(Dreyfus & Eisenberg, p. 265). Dienes (2004) compared the work of 
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a mathematician with that of an artist. Both labor to construct in an 
effort to communicate their understanding with others. Both play 
with ideas, combining them in various ways and as different struc-
tures until something emerges that the individual finds satisfying. 
Without the opportunity for creative play with a problem, students’ 
problem-solving skills are limited to the recall of methods created by 
others (Bronsan & Fitzsimmons, 2001).

When students begin to explore the structure of mathematics, 
they begin to explore the beauty of the domain and develop a sense 
of mathematics. Poincaré (1913) described this mathematical sense 
as mathematical intuition or the ability to see the whole and to find 
harmony and relationships gained through study and experience. 
These experiences can lead to students’ mathematical growth. The 
pupil’s insight can only be facilitated by a challenging problem that is 
sufficiently demanding, as well as sufficiently accessible. The empha-
sis in teaching mathematics shifts from replication of demonstrated 
methods to allowing the student the right to make mistakes and 
explore alternative routes, thereby opening new perspectives (Köhler, 
1997). Rather than closed problems with a single solution, students 
should be provided open-ended problems with a range of alterna-
tive-solution methods (Fouche, 1993). Some methods to solve the 
problems may be too simple, some may be out of reach of the child, 
while still others are within the child’s grasp. Encouraging a child to 
reach beyond the familiar and probe deeper into the relationships 
and structures of a problem is the essence of teaching mathematics 
creatively. 

Summary

A child’s growth in mathematics involves more than just mastering 
computational skills. Identification of mathematical talent using 
only speed and accuracy of computation would qualify hand-held 
calculators to be called talented mathematicians. Mathematical tal-
ent requires creative applications of mathematics in the exploration 
of problems, not replication of the work of others. Problem solving 
is the heart of genuine mathematical activity, yet the supply of cur-
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ricular materials designed to support a problem-solving approach 
to mathematical instruction is small in comparison to the materials 
aligned with a procedural, mechanical point of view (Silver, 1997). 

In the United States, the combined efforts of the NCTM and 
the National Science Foundation have begun to yield appropriate 
curricular materials to develop more creative talents in mathematics. 
Yet, the journey is only beginning. Methods of assessing mathemati-
cal creativity, teacher accountability, and greater emphasis within 
teacher education programs on teaching for conceptual under-
standing and pedagogically relevant content knowledge are needed. 
Without such a shift, the education community perpetuates the 
accepted practices of the childhood classroom experiences for our 
next generation of teachers. School board members and administra-
tors need to encourage and support innovative methods of teaching 
mathematics. This effort needs to be more than a policy statement; 
funding for materials and training, promoting mathematics as a 
creative endeavor within the community, providing specialists in 
mathematics and gifted education, and support and encouragement 
for classroom teachers are all needed. Classroom teachers should 
examine their teaching practices and seek out appropriate curricular 
materials to develop mathematical creativity. The challenge is to pro-
vide an environment of practice and problem solving that stimulates 
creativity, while avoiding the imposition of problem-solving heu-
ristic strategies (Pehkonen, 1997) that will enable the development 
of mathematically talented students who can think creatively and 
introspectively (Ginsburg, 1996).
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Media Themes and Threads
I am pleased to announce the return of “Media Themes and Threads” 
to the Journal for the Education of the Gifted. My name is Kristie 
Speirs Neumeister, and I will be the editor for this section. I received 
my doctorate in educational psychology, with an emphasis on gifted 
and creative education, from the University of Georgia in 2002. I 
am currently an assistant professor at Ball State University, where I 
teach undergraduate courses in educational psychology and gradu-
ate courses in gifted education. I am excited about the opportunity 
to edit this section of the journal. 

Veteran readers of the journal will be familiar with “Media 
Themes and Threads,” as it appeared in past volumes of JEG; how-
ever, for newer readers, I wanted to provide a description of the sec-
tion. The purpose of the section is to feature reviews of recent media 
products pertaining to gifted education, including current publica-
tions of books, videos, and instructional DVDs and CD-ROMs. 
Three reviews are published in this current issue.

Rebecca Nordin has written a thorough review of Gary Davis’s 
new book, Gifted Children and Gifted Education: A Handbook for 
Teachers and Parents. This book provides a foundational overview 
of the most salient issues in gifted education and would be a great 
resources for parents and teachers of gifted children alike. 

Middle school has been referred to as the “black hole” of gifted 
education due to a lack of programming and options for students. 
Susan Rakow’s book, Educating Gifted Students in Middle School: A 
Practical Guide, reviewed by Jamie MacDougall, expertly responds 
to this assertion by providing a description of effective programming 
options for gifted middle school students and also emphasizing the 
need for strong guidance and counseling components at this level. 

Finally, Felicia Dixon reviewed Laurence Coleman’s recent addi-
tion to the field, Nurturing Talent in High School: Life in the Fast 
Lane, in which he accounts the experiences of high school students 
attending a residential academy for gifted learners. Coleman offers 
a unique contribution to the field with this insider’s perspective on 
lived experiences of gifted adolescents.

I hope you will find these reviews informative as you continue 
to search for new information on parenting and educating gifted 
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students. Should you be interested in reviewing a new media pub-
lication for JEG or if you would like to have a specific current pub-
lication reviewed, please send your inquiries directly to me at the 
address below. 

Dr. Kristie Speirs Neumeister
Department of Educational Psychology

Teachers College
Ball State University

Muncie, IN 47306
Phone: 765-285-8518

Fax: 765-285-3653
E-mail: klspeirsneum@bsu.edu


