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In this article we explore young children’s development of mathematical
knowledge and reasoning processes as they worked two modelling problems
(the Butter Beans Problem and the Airplane Problem). The problems involve
authentic situations that need to be interpreted and described in mathematical
ways. Both problems include tables of data, together with background
information containing specific criteria to be considered in the solution process.
Four classes of 3rd-graders (8 years of age) and their teachers participated in the
6-month program, which included preparatory modelling activities along with
professional development for the teachers. In discussing our findings we
address:

(a) Ways in which the children applied their informal, personal knowledge
to the problems; 

(b) How the children interpreted the tables of data, including difficulties
they experienced;

(c) How the children operated on the data, including aggregating
and comparing data, and looking for trends and patterns; 

(d) How the children developed important mathematical ideas; and 

(e) Ways in which the children represented their mathematical
understandings.

Making modelling, generalization, and justification an explicit focus of
instruction can help to make big ideas available to all students at all ages.
(Carpenter & Romberg, 2004, p. 5).

We face a world that is shaped by increasingly complex, dynamic, and
powerful systems of information, such as sophisticated buying, leasing, and
loan plans that appear regularly in the media. Being able to interpret and work
with such systems involves important mathematical processes that have been
under-emphasized in many mathematics curricula. Processes such as
constructing, explaining, justifying, predicting, conjecturing, and representing,
as well as quantifying, coordinating, and organising data are becoming all the
more important for all citizens. Mathematical modelling, which traditionally
has been the domain of the secondary school years, provides rich
opportunities for students to develop these important processes.
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A model may be defined as “a system of conceptual frameworks used to
construct, interpret, and mathematically describe a situation” (Richardson,
2004, p. viii). By engaging in mathematical modelling students identify the
underlying mathematical structure of complex phenomena. Because
mathematical models focus on structural characteristics of phenomena (e.g.
patterns, interactions, and relationships among elements) rather than surface
features (e.g. biological, physical or artistic attributes), they are powerful
tools in predicting the behaviour of complex systems (Lesh & Harel, 2003).
As such, mathematical modelling is foundational to modern scientific
research, such as biotechnology, aeronautical engineering, and informatics
(e.g., Gainsburg, 2004).

Many nations are expressing concern over the lack of their students’
participation in mathematics and science (e.g., O’Connor, White,
Greenwood, & Mousley, 2001; US Department of Education, 2002).
However, research has shown that low levels of participation and
performance in mathematics are not due primarily to a lack of ability or
potential, but rather, to educational practices that deny access to meaningful
high-quality learning experiences (e.g., Tate & Rousseau, 2002). Many of
these under-achieving students show exceptional abilities to deal with
sophisticated mathematical constructs when these understandings are
grounded in their personal experiences and are expressed in familiar modes
of representation and discourse (Lesh, 1998). It has been shown that a
broader range of students emerge as being highly capable, irrespective of
their age or classroom mathematics achievement level when they participate
in mathematical modelling experiences (Doerr & English, 2003; Lamon,
2003; Lesh & Doerr, 2003). As a consequence, improvements in students’
confidence in, and attitudes towards, mathematics and mathematical
problem solving become evident.

The primary school is the educational environment where all children
should begin a meaningful development of mathematical modelling
(Carpenter & Romberg, 2004; Jones, Langrall, Thornton, & Nisbet, 2002;
Lehrer & Schauble, 2003; National Council of Teachers of Mathematics
(NCTM), 2000). However, as Jones et al. note, even the major periods of
reform and enlightenment in primary mathematics do not seem to have
given most children access to the deep ideas and key processes that lead to
success beyond school. 

The study reported here sought to redress this situation by engaging
young children and their teachers in a 6-month program, which included
preparatory modelling activities culminating in two modelling problems.
This paper explores the children’s development of mathematical knowledge
and reasoning processes as they worked the two modelling problems over
several weeks.



Mathematical Modelling for Young Learners
Until recently, mathematical modelling (of the type addressed here) has not
been considered within the early school curriculum. Rather, it has been the
domain of the secondary year levels (e.g., Stillman, 1998). We argue that the
rudiments of mathematical modelling can and should begin in the primary
school where young children already have the basic competencies on which
modelling can be developed (Carpenter & Romberg, 2004; Diezmann,
Watters, & English, 2002; Lehrer & Schauble, 2003; NCTM, 2000; Perry &
Dockett, 2002). Indeed, as Carpenter and Romberg documented recently, 

Our research has shown that children can learn to model, generalize, and
justify at earlier ages than traditionally believed possible, and that engaging
in these practices provides students with early access to scientific and
mathematical reasoning. Until recently, however, these practices have not
been much in evidence in the school curriculum until high school, if at
all. (p. 4).

Mathematical modelling activities differ from the usual problems that young
children meet in class. Problem solving in the early years has usually been
limited to examples in which children apply a known procedure or follow a
clearly defined pathway. The “givens,” the goal, and the “legal” solution
steps are usually specified unambiguously—that is, they can be interpreted
in one and only one way. This means that the interpretation process for the
child has been minimalised or eliminated. The difficulty for the child is
basically working out how to get from the given state to the goal state.
Although not denying the importance of these existing problem experiences,
it is questionable whether they address adequately the mathematical
knowledge, processes, representational fluency, and social skills that our
children need for the 21st century (Carpenter & Romberg, 2004; English,
2002; Steen, 2001). 

In contrast to the typical “word problems” presented to young children,
mathematical modelling problems involve authentic situations that need to
be interpreted and described in mathematical ways (Lesh & Harel, 2003). The
information given, including the goal itself, can be incomplete, ambiguous,
or undefined (as often happens in real life). Furthermore, information
contained in these modelling problems is often presented in representational
form, such as tables of data or visual representations, which must be
interpreted by the child. 

In recent years there has been a strong emphasis on providing young
children with equal access to powerful mathematical ideas (Carpenter &
Romberg, 2004; Diezmann & Watters, 2003; English, 2002; Perry & Dockett,
2002). Mathematical modelling problems provide one avenue for meeting
this challenge. Key mathematical constructs are embedded within the
problem context and are elicited by the children as they work the problem.
The generative nature of these problems means that children can access
mathematical ideas at varying levels of sophistication. For example, as we

English & Watters60



Mathematical Modelling in the Early School Years 61

indicate later, young children can access informal ideas of rate by
considering how time and distance could determine the winner of a paper
plane contest. 

The importance of argumentation in young children’s mathematical
development has also been highlighted in recent years (e.g., Perry & Dockett,
2002; Yackel & Cobb, 1996). Although Piaget (e.g., Inhelder & Piaget,
1955/1958) claimed that the ability to argue logically is beyond the realms of
young children, recent work has demonstrated otherwise (e.g., Dockett &
Perry, 2001). As Perry and Dockett (2002) noted, it is important for us to be
aware of and nurture the early genesis of argumentation, especially since it
will form the basis of mathematical proof in later years. Mathematical
modelling activities provide a solid basis for young children’s development
of argumentation because they are inherently social experiences
(Zawojewski, Lesh, & English, 2003) and foster effective communication,
teamwork, and reflection. The modelling activities are specifically designed
for small-group work, where children are required to develop sharable
products that involve descriptions, explanations, justifications, and
mathematical representations. Numerous questions, conjectures, conflicts,
resolutions, and revisions normally arise as children develop, assess, and
prepare to communicate their products. Because the products are to be
shared with and used by others, they must hold up under the scrutiny of the
team members. 

Description of the Study

Setting and Participants
All four 3rd-grade classes (children approximately 8 years old) and their
teachers from a state school situated in a middle-class suburb of Brisbane,
participated in the study. The principal and assistant principal provided
strong support for the project and attended some of the workshops and
debriefing meetings that we conducted with the teachers. 

Tasks
In collaboration with the teachers, we developed four preparatory activities,
which were followed by two modelling problems. 

The preparatory activities. These were designed to develop children’s
skills in: (a) interpreting mathematical and scientific information presented
in text and diagrammatic form; (b) reading simple tables of data; (c)
collecting, analysing, and representing data; (d) preparing written reports
from data analysis; (e) working collaboratively in group situations; and (f)
sharing end products with class peers by means of verbal and written
reports. For example, one preparatory activity involving the study of animals
required the students to read written text on “The Lifestyle of our Bilby,”
which included tables of data displaying the size, tail length, and weight of



two types of bilbies. The children answered questions about the text and
the tables.

The modelling problems. The contexts of the modelling and preparatory
activities were chosen to fit in with the teachers’ classroom themes, which
included a study of food, animals, and flight. The first modelling activity,
“Farmer Sprout,” comprised a story about the various types of beans a
farmer grew, along with data about various conditions for their growth. After
responding to questions about the text, the children were presented with the
“Butter Beans” problem comprising two parts. The children had to examine
two tables of data displaying the weight of butter beans after 6, 8, and 10
weeks of growth under two conditions (sunlight and shade; see Table 1).
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Table 1
Data presented for the Beans Problem

Butter
Bean Week 6 Week 8 Week 10
Plants

Row 1 9 kg 12 kg 13 kg

Row 2 8 kg 11 kg 14 kg

Row 3 9 kg 14 kg 18 kg

Row 4 10 kg 11 kg 17 kg

Sunlight

Butter
Bean Week 6 Week 8 Week 10
Plants

Row 1 5 kg 9 kg 15 kg

Row 2 5 kg 8 kg 14 kg

Row 3 6 kg 9 kg 12 kg

Row 4 6 kg 10 kg 13 kg

Shade

Using the data of Table 1, the children had to (a) determine which of the
conditions was better for growing butter beans to produce the greatest crop.
As a culminating task the children were required to write a group letter to
Farmer Sprout in which they outlined their recommendation and explained
how they arrived at their decision; and then (b) predict the weight of butter
beans produced on week 12 for each type of condition. The children were to
explain how they made their prediction so that the farmer could use their
method for other similar situations. On completion of the activity, each
group reported back to the class. Following the reporting back, the group’s
peers asked questions and provided constructive feedback. 

The second modelling activity, “The Annual Paper Airplane Contest,”
(see Appendix) presented children with a newspaper article that described
an annual airplane contest involving the flight performance of paper
airplanes. The children were given information regarding the construction of
the planes and the rules for the flight contest. After completing a number of
comprehension questions, the children were given the problem information
and associated investigation shown in the Appendix.
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Procedures
Teacher meetings. We implemented a number of workshops and debriefing
sessions for the teachers throughout the year. We conducted two half-day
workshops with the teachers in term 1 to introduce them to the activities and
to plan the year’s program more thoroughly. In these workshops, the
teachers worked on the activities they were to implement and identified
various approaches to solution. Two more workshops were conducted
during the middle and at the end of the year for planning and reflective
analysis of the children’s and teachers’ progress. Several shorter meetings
were also conducted throughout the year, including those before and after
the teachers had implemented each activity. During these debriefing sessions
the teachers discussed with the researchers issues related to student learning,
the activities, and implementation strategies.

Task implementation. The preparatory activities were implemented
weekly by the teachers towards the end of first term and part of second term.
During the remainder of second term and for all of third term, the teachers
implemented, on a weekly basis, the two modelling problems. There was
approximately one month’s lapse between the children’s completion of the
Butter Beans Problem and the Airplane Problem. 

Each modelling activity was explored over 4–5 sessions of 40 minutes
duration each and conducted as part of the normal teaching program. After
an initial whole class introduction to the modelling activity, the children
worked independently in groups of 3 to 4 on the activity. The teachers
monitored each group and provided scaffolding where necessary. Such
scaffolding included questioning children for explanation and justification,
challenging the children, querying an inappropriate action, and providing
overall encouragement and motivation. The teachers also focussed on
supporting children’s writing and the development of group skills. In the
final session the students provided a group report to the class and their
conclusions were discussed.

Each of the teachers had previously established procedures for group
work and for class reporting. For example, each group of children had a
group-appointed manager who was responsible for organising materials and
keeping the group on task. The importance of sharing ideas as well as
explaining answers was also emphasised in class group work. 

Data Collection and Analysis
In each of the four classes, we videotaped the teacher’s interactions and
exchanges with the children in each of the sessions. The teacher was fitted
with a radio microphone so that her dialogue with children was the focus of
data collection. We also audiotaped each of the teacher meetings.

Given the naturalistic setting and the desire to be as least intrusive as
possible, videotaping of children was limited to a focus group in each of two
classes. Another focus group in each class was audiotaped. These focus
groups were selected after discussions with the teachers and were of mixed



achievement levels and gender. One of the main criteria for selecting the
focus groups was children’s willingness to verbalise while working on tasks. 

Other data were collected in response to critical events. That is, the
camera would focus on a group who were engaged in resolving some
specific aspect of a problem. Other data sources included classroom field
notes, children’s artefacts (including their written and oral reports), and the
children’s responses to their peers’ feedback in the oral reports. 

In our data analysis, we employed ethnomethodological interpretative
practices to describe, analyse, and interpret events (Erickson, 1998; Holstein
& Gubrium, 1994). This methodological approach allowed us to describe
the social world of the classroom by focussing on what the participants said
and did, rather than by applying predetermined expectations on the part of
researchers. In our analyses, we were especially interested in (a) the nature
and development of the mathematical ideas and relationships that the
children constructed, represented, and applied; (b) the nature and
development of the children’s thinking, reasoning, and communication
processes; and (c) the development of socio-mathematical interactions
taking place within groups (children) and whole-class settings (teacher and
children), with particular interest in those interactions involving
mathematical argument and justification (Cobb, 2000). 

We thus constructed detailed descriptions of the classes to capture the
socio-cultural interactions that afford opportunities for children to engage in
mathematical learning and reasoning. At a more specific level we used
iterative refinement cycles for our videotape analyses of conceptual change
in the children (Lesh & Lehrer, 2000). Through repeated and refined analyses
of the transcripts and videotapes we were able to identify themes and
perspectives that enabled us to make generalisations or assertions about the
teachers’ and children’s behaviours (Cresswell, 1997).

Findings
In reporting our findings, we first address the children’s progress on the
Butter Beans Problem and then examine their developments on the Airplane
Problem. We also consider how children applied their informal, personal
knowledge in working the problems.

Butter Beans Problem: Part (a)
Across the four classes, we noted an initial tendency for the children to want
to record an answer from the outset, without carefully examining and
discussing the problem and its data. The children had to be reminded to
think about the given information and share ideas on the problem prior to
recording a response. We also observed the children oscillating between
analysing the data and discussing at length the conditions required for
growing beans. The children drew on their informal knowledge acquired
through past experiences in trying to account for the variations in the data.
At times, they became bogged down discussing irrelevant issues because
their informal knowledge was taking precedence over their task knowledge
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(i.e., the children’s recognition of the specific information presented in the
problem). We illustrate this point in later excerpts of the children’s work. 

We noted at least three approaches that the four classes of children
adopted in analysing the data in Table 1. The first approach was to focus
solely on the results for week 10 and systematically compare rows 1 to 4 for
each condition (i.e., compare 13 kg with 15 kg, 14 kg with 14 kg and so on).
A variation of this approach was to make the comparisons for each of weeks
6 and 8 as well. A second approach was to add up the data for week 10 in
each condition and compare the results. A third but inappropriate variation
of the last approach was to sum all of the weights in each table and compare
the results. As one child explained, “Sunlight has 146 to 118 (shade). So
plants are in sunlight.” A further approach (again, inappropriate) was to add
the quantities in each row for each condition and compare the end results
(i.e., 9 kg + 12 kg + 13 kg for sunlight and 5 kg + 9 kg + 15 kg for shade, and
so on).

As the children explored the data initially, they were looking for trends
or patterns that would help them make a decision on the more suitable
condition. They were puzzled by the anomalies they found and used their
informal knowledge to account for this, as can be seen in the following group
discussion (hereafter referred to as Amy’s group):

Students collectively:    10 against 6, 11 against 10, and 17 against 13.

Amy: So this is obviously better than that, but working out why is the
problem.

Oscar: Yes, because the more sunlight the better the beans are. For some
reason…

Amy: In some cases, it’s less; but in most cases, it’s more the same. 

Tim: It would depend on what type of dirt it has been planted in.

Oscar: I’ve got an idea. Perhaps there were more beans in the sunlight. 

Tim: We’re forgetting one thing. Rain. How much rain!

Amy’s group spent quite some time applying their informal knowledge to
identify reasons for the trends in data. In doing so, the children engaged in
considerable hypothetical reasoning and problem posing, which eventually
led them back to a consideration of the task information:

Amy: We’re stuck. I can’t work this out.

Oscar: I’ve got an idea. If we didn’t have any rain, the sunlight wouldn’t
…it wouldn’t add up to 17 (kg). And, if we didn’t have any sunlight,
it wouldn’t be up to 17 either. But if we had sunlight and rain…

Tim: Do you want me to jot that down?

Oscar: Don’t jot that down because that’s wrong. OK, 15 kilograms.

For the remainder of this lesson, Amy’s group cycled through applying their
informal knowledge to find reasons for why they thought sunlight was
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Figure 1. Amy’s group’s representation of the beans’ growth in sunlight
and shade.

better, reviewing the task information by re-examining the sets of data, and
attempting to record their findings. In the following excerpt, the group
explains to the researchers the dilemma they were facing and the
explanations they were considering.

Oscar: But our problem is, we thought it would be because of the
rain. It can’t get in as well with the shade cloth on. But then
we found these results. And we’ve got a problem. We can’t
work out why this has popped up. So we’re stuck here. 

Amy: We thought that it was probably that they accidentally put-
when they planted the plants, they probably accidentally put
slightly bigger plants in this row 1; or the row could have been
accidentally longer so it would weigh more. But otherwise,
we’re sure that sunlight’s the best. 

Tim: I think sunlight’s best.

Researcher: Why do you think sunlight is better?

Tim: Because of the results, like here or here (pointing to week
10 in each condition)

Amy: Like, look at 17 to 13 or 18 to 12.

Researcher: Or 14 to 14, or 13 to 15.

Amy: Yeah, these two are just a bit of a problem, and we’ve worked
out it was probably the row size.
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Amy’s group made further progress in the next session where they were
more focused on the task information with Amy creating a diagram to show
the difference in mass between the two conditions (see Figure 1). Amy
directed her peers’ attention to row 3, week 10, where the difference was the
greatest (“Here’s the best and here’s the worst”). Amy attempted to show the
other group members this difference by drawing a simple bar graph
(“picture graph”, as she described it) with the first bar coloured yellow to
represent the 18kg (sunlight) and the second bar coloured black to represent
the 12kg (shade).

In the excerpt below, Amy is explaining the diagram to the group. At the
same time, she is trying to get her peers’ attention back onto the problem. 

Amy: Ok, guys, if you said this was shade and here’s the worst and here’s
the best (pointing to row 3, week 10)-shade’s about there (pointing
to her diagram). Here’s the best and here’s the worst…and that
represents the sunlight beans, that would be about the sunlight
there (pointing to the yellow shading on her diagram). …what I’m
trying to say is the shade is about half as good as sunlight.

Amy’s peers, however, were not listening to her so she decided to pose this
question to bring them back on task: “This here is sunlight and this here is
shade. Which one’s better?” Still not happy with her peers’ lack of
enthusiasm, Amy posed a more advanced question for her peers:

Amy: Oscar, if this long piece was shade, and the short piece was
sunlight, and they represented the weight of the beans, which one
would be better?

Oscar: This.

Amy: No, shade would be because it’s bigger. A bigger mass of kilograms.

The difficulty for many of the children across the four classes was completing
the letter for Farmer Sprout. As Amy explained to her teacher, “You see, I’ve
drawn a picture graph and we’ve worked out the answer, but we can’t put it
into words… I know! We can draw this (her representation) on our letter and
explain what it means in words. And that’ll get us out of it.” The group
finally produced the letter shown in Figure 1, choosing to focus solely on the
largest difference between the conditions.

When asked where they obtained their information for this conclusion,
Amy explained, “Well, we basically added all of this up (week 10 data for
each condition) and we found that shade produced about half as much as
sunlight altogether.”

Other children produced reports that were embellished with their
personal knowledge but limited in reference to task knowledge. For
example, a group of boys reported to their class as follows:

Dear Farmer Sprout. We have measured the conditions that you should grow the
butter beans in summer because they will grow better. Butter beans will grow
more in the sun than in shade which will make it taste better. They will make you



strong. Farmer sprout the beans you are growing are good beans. We think you
should pick the beans on Sunday. You should have lots of good beans. Get some
spray to kill the bug. Sunlight has 146 kg to 118 kg. So plants, it is in sunlight.

Butter Beans Problem: Part (b)
In responding to the second component of the Butter Beans Problem, the
children generally relied on patterns in the data to predict the mass of the
beans after 12 weeks. For example, another group in Amy’s class reported
their predictions for the sunlight condition as follows: “Our findings show
that in row 1, week 12, you will get 15 to 17 kilograms, and in week 12, row
2, you’ll get 17 kilograms, and in row 3, week 12, you will get 19 to 21
kilograms, and in week 12, row 4, you shall get 18 to 20 kilograms. That’s
what we think for sunlight.” When asked how they got these findings, the
children explained, “The data, because we went to week 10 and we counted
2 on…because they’ve sort of gone up like, in twos and it was another two.” 

When the teacher asked the class if the pattern in each row of the table
“was exactly the same, that is, increasing by one or increasing by two,” the
children agreed that it wasn’t. When asked for some reasons why, Amy
responded, “Because they’re (plants) not made to be a counting pattern.” The
teacher then discussed with the children various external factors that could
be responsible for the different rates of growth. 

Children’s Responses to the Airplane Problem
As indicated in the Appendix, the Airplane Problem required the children to
determine the winner with respect to: (a) The plane that stays in the air for
the longest time; (b) The plane that travels the greatest distance in a straight-
line path; and (c) The overall winner for the contest. This problem may be
considered more challenging than the Butter Beans Problem in that
relationships between variables are involved. The Airplane Problem also
engages children in a consideration of rules and conditions that anticipate
some decision being made. 

Across the four classes we observed a variety of approaches to working
the problem, with these approaches displaying important mathematical
developments. We also noted a few difficulties in the children’s
interpretation of the table of data and their ways of operating on the data. 

On commencing, many children were absorbed in applying their
personal knowledge to dealing with the problem. For example, they
discussed the nature of the wings, the cabin, the luggage area, and possible
flight paths. Some groups physically acted out a plane’s flight path, while
others made a simple paper plane. We consider this initial discussion and
physical representation to be of benefit to the children in familiarising
themselves with the problem. Children’s application of personal knowledge
to this problem was less intrusive than in the Butter Beans Problem, with
the exception of the notion of “scratch”. Many children associated the term
“scratch” with physical marks on a plane, rather than its meaning of
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elimination. The teacher’s intervention was needed here to elicit this
alternative meaning from the children. 

On continuing with the problem, most groups across the four classes
focused on one variable only, be it the number of scratches, the distance
travelled, or the time taken by each team. For example, Team C was
considered “The winners of the time in the air” and Team E, “The winners of
the distance travelled” (the children arrived at these results by adding the
respective time and distance data for the three attempts). 

There were a few groups who initially operated inappropriately on the
data by adding metres to seconds. When probed by their class teacher, one
group indicated that they did not fully understand what the data represented,
as can be seen in the excerpt below. Notice, however, that Matt had doubted
the appropriateness of his group members’ actions from the outset.

Teacher: How do you know they would be the winners all the time?

Susie: Because we added up. They are overall winners.

Teacher: Why are they overall winners?

Susie: Because we added up … we added up 32 onto 5.

Teacher: What are these numbers all about? What are you adding up?

Matt: That’s what I tried to ask them. 

Teacher: Well, why don’t you look at your labels? The labels are so
important.

One group member acknowledged that they had been looking at the labels
(units of measure) but responded that “They are the points”, indicating that
she had difficulty in interpreting the data. Children who added data
inappropriately in the Butter Beans Problem (i.e., summing all the weights in
each table) also had problems with data interpretation. 

Several groups across the four classes initially used the notion of scratch
as the sole criterion for deciding on possible winners. That is, winners were
teams who were not scratched on any trial. The teachers’ input here was
necessary to challenge this claim. Alex’s group, for example, had decided
that Team C was the overall winner on the basis that it was not scratched.
When the teacher drew attention to the fact that both Team B and Team E had
not been scratched, the group quickly reconsidered their answer and stated:
“We thought it was either Team C or Team E.” On the other hand, children
who used the number of scratches as one of the criteria for determining the
winner revealed elementary probability ideas when they stated that a team
had less chance of winning if it were scratched. This understanding is
illustrated in the letter of Tom’s group, cited later.

We were especially pleased to see children across all four classes develop
at least an informal understanding of rate (speed) as they tackled the issue of
an overall winner. We provide examples of this development in the following
excerpts and begin by returning to Amy’s group. In solving the Airplane
Problem, Amy explained, “Actually, me and Douglas have worked it out.



The people who have the least amount of seconds to the most amount of
metres with the least amount of scratches.” The teacher asked the group to
clarify this statement:

Amy: The least number of seconds with the most metres. So like they
spend barely any time flying like 12 metres. They spend one
second in 12 metres. 

Teacher: So that’s one way of looking at it. So you’re thinking that it’s
going to be travelling very fast but a long distance. So would that
be to decide the distance travelled?

Oscar: No, the overall.

In later discussion, when Amy’s class was presenting their reports, we (the
researchers) asked one group of students how their approach to problem
solution differed from that of the group who had presented before them.
Notice in the discussion below, how a stronger understanding of speed was
emerging.

Researcher: An interesting letter. Who can tell me, was the letter that this
group wrote…did it have the same information as the first
group’s letter, or was it different information?

Chris: Different.

Researcher: In what way was it different? 

Chris: Different strategies…they took notice of the scratches.

Researcher: Anything else different from the first group?

(Inaudible student response)

Researcher: Yes, they looked at the least number of seconds, whereas
Chris, your group looked at the most number of seconds.

Amy: We thought the least, because it would obviously be a better
plane if it could have (inaudible). 13 metres in just 2 seconds
means it’d fly really fast rather than say, 13 metres in 20
seconds…it would be just gliding along. We thought about
the speed as well.

In another class, Tom’s group explained how they arrived at the overall
winner by considering three variables, namely, time, distance, and number of
scratches. However, this group considered the greatest time in the air, rather
than the least, to be an important variable:

Dear Judges
We have found a way to see who is the winner. 
You have to time the team to see who is in the air for the longest.
You have to measure to see who goes the furtherest.
You look closely to see who goes straight and whoever gets the longest gets a prize
and whoever stays in the air longest gets a prize.
If a team gets scratched, it has less chances.
Whoever gets the longest in the air and the distance is the overall winner.
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It could be that the structure of the problem questions influenced Tom’s
group (and others) to choose the greatest distance/greatest time relationship
when completing their report. We challenged Tom’s class by asking the
question, “If two paper planes were thrown and one went 12 metres in 6
seconds and a second plane went 12 metres in 3 seconds, who would be the
winner?” The children immediately identified the first plane as the winner,
explaining, “Because they (the first plane) stayed in the air longest and both
went the same distance. The six made the difference.” There was agreement
with this response across the class.

In yet another class, Menassa’s group provided a detailed report that
included the order in which the teams should win and also referred to an
inverse relationship between time in the air and points that should be
awarded. The group members took turns in explaining the system they had
developed:

First member: Longer seconds they take in the air, the less points they
get. The less time in the air and the longer they go in the
air, the more points. 

Second member: Team E was the group you should choose (the child made
reference to the use of trundle wheels and stop watches to
measure distance and time respectively).

Third member: We think that Team E should win the contest. They
should win because nobody else managed to fly 13 metres
in two seconds. Team A would come second; They went
12 metres in 2 seconds. Team B would come third; They
got 3 seconds in 12 metres, and they had no scratches.
Team D would come fourth; They got to go 12 metres in
three seconds but they had one scratch. Team C would
come fifth because they got 11 metres in two seconds and
Team F would come last. Team F’s best score is 11 metres
in 2 seconds with one scratch.

One of the researchers queried the group:
Researcher: Would you like to tell us more about those teams? You said

that a team went 12 metres in three seconds. Is that better than
a team that goes 12 metres in six seconds?

Children: Yes, yes.

Researcher: Why did you say that?

Children: Because they took less time in the air.

Researcher: What else were you thinking about?

Children: How far they go.

Discussion and Concluding Points
The modelling problems used in our study encourage young children to
develop important mathematical ideas and processes that they normally
would not meet in the early school curriculum. The mathematical ideas are



embedded within meaningful real-world contexts and are elicited by the
children as they work the problem. Furthermore, children can access these
mathematical ideas at varying levels of sophistication.

In both modelling problems we observed the interplay between
children’s use of informal, personal knowledge and their knowledge of the
key information in the problem. At times children became absorbed in
applying their personal knowledge to explain the data, which resulted in
slowed progress, especially on the Butter Beans Problem. At other times,
children’s informal knowledge helped them relate to and identify the
important problem information (e.g., understanding the conditions for the
airplane contest). Some groups embellished their written reports with their
informal knowledge, such as referring to additional conditions required for
growing beans. We also observed children recognising when their informal
knowledge was not leading them anywhere and thus reverting their
attention to the specific task information. We hypothesise that, in doing so,
the children were showing recognition of and respect for the presentation
and organisation of the data in the problems.

We consider it important that children develop the metacognitive and
critical thinking skills that enable them to distinguish between personal and
task knowledge, and to know when and how to apply each during problem
solution. The role of the teacher in developing these skills has been
highlighted by Lehrer, Giles, and Schauble (2002). Teachers need to walk a
tight rope in capitalising on the familiar in data modelling and in
“deliberately stepping away from it” to assist students in considering the
data themselves as objects of reflection (p.23).

The need to expose young children to mathematical information
presented in various formats, including tables of data, is evident from this
study. While the children developed facility in interpreting and working with
the tables of data, some groups experienced initial difficulties. For example,
the cumulative nature of the data in Table 1 was not apparent to some
children, who added all of the data for sunlight and compared this with the
aggregate of the data for shade. Activities in which children collect and record
their own data can assist here. In the present study, this was achieved through
the preparatory activities leading up to the modelling problems.

In both modelling problems we saw the emergence of important
mathematical ideas that the children had not experienced during class
instruction. Children’s elementary understanding of change and rate of
change was evident on both problems, while notions of aggregating and
averaging were seen on the Butter Beans Problem. Of particular interest
though, is children’s informal understanding of speed observed in the
Airplane Problem. Some groups focused on the relationship, “shortest time,
longest distance” to determine the winning teams, and in so doing, referred
to the “speed” of a plane or how “quick/quickly” a plane flew. Other groups
considered the relationship, “longest time, longest distance” to be the
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determinant of the winning plane. The latter could be due in part to the way
in which the problem questions were worded. Nevertheless, we see this
Airplane Problem as providing opportunities for children to explore
quantitative relationships, analyse change, and identify, describe, and
compare varying rates of change, as recommended in the Grades 3-5 algebra
strand of the Principles and Standards for School Mathematics (NCTM,
2000). In addition, we saw elementary probability ideas emerging when
children linked the number of scratches with a plane’s chances of winning. 

Our study has also highlighted the contributions of these modelling
activities to young children’s development of mathematical description,
explanation, justification, and argumentation. Because the problems are
inherently social activities, children engage in numerous questions,
conjectures, arguments, conflicts, and resolutions as they work towards their
final products. Furthermore, when they present their reports to the class they
need to respond to questions and critical feedback from their peers. We see
this as another area where the teacher’s role is important, specifically, in
scaffolding the quality of discursive practices. 
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