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A cognitive/metacognitive framework is presented for analysing applications
tasks and responses to these. Conditions facilitating or impeding access to such
tasks at the upper secondary level were identified using qualitative data
analysis techniques within this framework. Strategies employed in exploiting,
or overcoming these conditions were identified. A well-developed repertoire of
cognitive and metacognitive strategies together with a rich store of
mathematical knowledge, real-world knowledge and experiences, and
comprehension skills facilitated access. This was enhanced by metacognitive
knowledge encouraging student engagement with the task and by students
imagining they were in the task situation. Once moderate skill had been
achieved in accessing these applications, coordination and integration of
multiple representations, further cues, and mathematical processes and
procedures became critical.

The use of applications in secondary classrooms for both teaching and
assessment is receiving increasing attention in many countries, for example,
Australia (Queensland Board of Senior Secondary School Studies [QBSSSS],
1992, 2000), the Netherlands (Gravemeijer & Doorman, 1999), Uganda (Ekol,
2004), and Canada (Roulet & Suurtamm, 2004). According to Blum and Niss
(1991), there are essentially five arguments presented by supporters of their
use. These are: (a) as a medium for developing general mathematical
competence and attitudes; (b) as a means of developing students’ social
awareness; (c) to prepare students for using mathematics for problem
solving or description in situations in other subject disciplines, occupational
contexts, and actual, or future, everyday life-roles; (d) as an essential
component of the broader picture of mathematics; and (e) for legitimating
mathematical studies by applications providing motivation and relevance.

Ideally, the starting point for a mathematical application is a situation in
the real world that can possibly be analysed and/or described using
mathematics. This situation is then simplified to allow mathematical analysis
and/or description by deliberately selecting particular variables, whilst
ignoring others, and making appropriate assumptions. A real model that has
to be mathematised (Blum & Niss, 1991) results: “Mathematization [sic] is the
process from the real model into mathematics” (p. 39). Conditions and

2004, Vol. 16, No. 1, 41-70

1 The research reported in this paper was supported in part by an Internal Research Award from the School
of Education, James Cook University, QLD, Australia, and was conducted as part of my doctoral studies at
the University of Queensland.



Stillman

assumptions in the real model are translated into a mathematical model. Model
formulation is the entire process from the real situation through the idealised
real model to this mathematical model. This is the first phase of mathematical
modelling. The remaining phases involve identification of relevant
mathematical field(s); use of mathematical methods and insights to obtain
results; translation of results back into the situation; and a “reality check”
(Pollak, 1997, p. 102) to verify the results are practical, reasonable, and
acceptable within the original situation. If verified, the results are
communicated to potential users; otherwise, the model must be analysed for
flaws and the process repeated. “What is different about real-world
mathematical problem solving [mathematical modelling] is that the
standards and mental processes of two masters – the real-world situation
being studied as well as mathematics – are involved” (Pollak, 1997, p. 102).

Classroom application tasks are often much more modest in their
“modelling” of the real world. Model formulation is usually curtailed to the
last step or the mathematical model is given. The identification of the field(s)
of mathematics of relevance to the model can also be considerably reduced
as the appropriate mathematics to use can be fairly obvious if only
applications related to recently studied work are set. Although the results are
usually translated back to the original situation, the reality check is rarely
more than cursory. 

Embedding mathematical tasks in meaningful task contexts for both
teaching and assessment purposes can be enriching according to Van den
Heuvel-Panhuizen (1999). She claims task contexts do this by enhancing
accessibility, revealing more about students’ abilities, giving students more
latitude in their approach, and by providing students with solution strategies
inspired by their imagining themselves in the situations portrayed. She
acknowledges, though, that locating tasks in familiar contexts is not always
supportive of students’ solution attempts and may create difficulties,
particularly in assessment. Such difficulties include students challenging the
intended mathematical interpretation of the problem by deliberately taking
an alternate reading of the situation which is consistent with a plausible real-
world scenario, or “ignoring the context” entirely and therefore excluding
their “real-world knowledge and realistic considerations” (Van den Heuvel-
Panhuizen, 1999, p. 137) from the solution process. Many researchers (e.g.,
Greer & Verschaffel, 1997; Reusser & Stebler, 1997; Verschaffel, De Corte,
& Vierstraete, 1999; Verschaffel, Greer, & De Corte, 2000; Yoshida, Verschaffel,
& De Corte, 1997), working in a variety of countries, have shown that across
a range of contextualised problems students have predominantly answered
without engaging realistic constraints when it has been prudent to do so.
Other researchers raise further concerns. Cooper (1998) and Busse and Kaiser
(2003), for example, point out that contexts are open to many interpretations.
Furthermore, Lubienski (2000, p. 457) questions “the use of open,
contextualised mathematics problems” as a means of “promoting equity for
lower SES students”. In her study, lower socio-economic status students did
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not solve contextualised problems in ways that helped them learn more
“powerful generalizable, methods” (p. 477) nor were they able to see that the
same mathematical idea was being encountered in a variety of task contexts.
These concerns are critical if they indicate that many students are facing
insurmountable difficulties in accessing such tasks because of the contextual
demand of these tasks.

Stillman and Galbraith (1998) infer from the first author’s previous study
of applications tasks, that applications teaching should focus on reducing the
time students spend on orientation activities. This can be achieved by
“developing cognitive skills that facilitate more effective problem
representation and analysis, and by promoting the development of
metacognitive strategy knowledge” (p. 185) to facilitate appropriate decision
making during orientation. Kadijevich (1999) highlights the lack of focus in
research studies on this important phase of an application-centered
approach. He believes that the demanding interplay between students’
cognitive, metacognitive, and affective domains that such an approach
requires, has been neglected in both research and teaching. It is imperative,
then, that the conditions affecting students’ access to applications tasks and
the cognitive and metacognitive strategies they employ to take advantage of
conditions facilitating access or successfully overcoming conditions which
impede access, be identified. In accordance with Flavell (1987), a cognitive
strategy is taken to mean “one designed simply to get the individual to some
cognitive goal or subgoal” (p. 23), whilst a metacognitive strategy is one used
to monitor or regulate what is being done in a cognitive strategy.

Cognitive/Metacognitive Framework for Analysing
Applications Tasks

The cognitive/metacognitive framework (Figure 1) has been developed by
the present author and used as the basis for generating an analysis system for
examining the complexity of applications tasks (Stillman, 2002). The research
reported in this paper comprises a small part of this larger study. Here the
framework is used to identify conditions facilitating or impeding students’
access to applications tasks through an analysis of responses to such tasks.
As well as including students’ cognitive and metacognitive resources, the
framework incorporates cognitive technologies (Pea, 1987) such as graphing
calculators, as these tools present opportunities for freeing up limited
cognitive resources for other activities during task solution.

The framework consists of a set of information processing structures and
associated resources; an operating system which perceives the stimulus cues
in the task presentation, retrieves information from the external sources,
working memory and long term memory, and operates on primary and
secondary productions (Fong, 1994); and a monitoring and evaluation
system. There are five main components:
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(a) the external source (Fong, 1994) which is the problem statement
and any visual cues;

(b) the working memory (WM) (Baddeley, 1997);
(c) long term memory (LTM) (Bruer, 1993; Fong, 1994);
(d) external working memory which includes processing units of

calculating, graphing, and modelling devices; and
(e) external memory (Mayer, 1983) or secondary external source

which can include pen and paper, calculator displays, or
calculator memory.

As components (a), (b), and (c) are relevant to the study reported in this
paper they will be elaborated further.
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Figure 1. Cognitive/metacognitive framework for analysing applications tasks.
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External Source
The primary external source refers to the data or information that can be
extracted directly from the problem statement or any accompanying visual
representations such as tables, graphs, photographs, and diagrams. It is the
primary source of information external to the problem solver and takes the
form of mathematical entities, contextual cues, and visual cues. Not all data
in the problem presentation have the same strength in cuing facts, concepts,
processes, prior experiences, semantic knowledge, or metacognitive
knowledge and strategies from LTM (Stillman & Galbraith, 1998). Wagenaar
(1986) uses the term cuing efficiency to refer to the likelihood of retrieval of
a specific memory as a function of the particular prompt that is used. This
concept is of especial relevance here to the likelihood of retrieval of
appropriate knowledge from LTM as a function of the particular piece of
data presented in the task presentation. According to Kaplan and Simon
(1990), the salience of specific cues for a particular task solver contributes to
performance on a task. Cue salience interacts with the task solver’s domain
specific prior knowledge and knowledge of global strategies. Prior
knowledge can have a beneficial effect constraining the search space for a
task representation by ignoring irrelevant details and focussing on that
section of the data that is critical for a solution. However, with tasks
involving insight, prior knowledge can have the reverse effect leading to
search in the wrong part of the problem space (Kaplan & Simon, 1990).
Similarly, aberrant readings of a verbal task resulting from irrelevant prior
knowledge interfering with the task solver’s initial reading can result in a
search in the wrong problem space. Although “it is not possible for a teacher
to predict the many readings students may produce from a single text”
(Peirce & Stein, 1995, p. 63), multiple readings are less likely in the highly
ritualised social context of written test conditions in which these applications
tasks are usually assessed because of the influence of students knowing “the
customs of the classroom microculture” (Voigt, 1998, p. 192).

In applications tasks, cue salience and its interaction with prior
knowledge are of critical importance. It has been suggested (Masingila,
Davidenko, & Prus-Wisniowska, 1996) that secondary students may be
unable to consider all the constraints in a realistic task situation, or keep track
of them, due to not being exposed to many classroom tasks with realistic
levels of constraints; however, a lack of anything in their experience that
really could raise the salience of limiting constraints to a critical threshold is
an alternative explanation. Prior experience in the real situation, rather than
the vicarious experience of reading a verbal description of it, can raise the
salience of a particular cue. This alternative explanation has been explored in
the larger study and reported elsewhere (Stillman, 1998; 2000).

Not all task solvers are able to extract the same amount or the same type
of information from a task presentation. In many experimental studies of the
problem solving abilities of school children in the Soviet Union, Krutetskii
(1962/1969, 1968/1976) found that “under identical conditions of perception
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of mathematical material, pupils with different abilities in mathematics
obtain information of a different nature” (Krutetskii, 1962/1969, p. 81).
Furthermore, the more capable problem solvers always acquired more
information and had “an ability to actively extract from the given terms of a
problem the information maximally useful for solution” (Krutetskii,
1968/1976, p. 233).

Successful problem solvers, therefore, not only need an ability to be able
to gather relevant information from the task, but also to selectively focus
during this information gathering process, so as to select only a minimal
subset of that information in an efficient and mathematically perceptive
manner. Sometimes this selective focussing on the available information
needs to be done iteratively rather than on a single pass through the data. If
only “maximally useful” information is extracted and attended to, students
can then effectively reduce the demand on their working memory as
resources related to attention are not wasted in focussing on extraneous data.

This ability of successful problem solvers to extract, by whatever means,
“maximally useful” information may be related to how they perceive the
data in the task presentation. According to Broadbent (1987), “incoming
material is ‘chunked’ by recognising a sequence of several items as forming
a familiar unit” (p. 182). In the classroom, students’ ability to chunk
information relates to the conceptual and procedural knowledge base they
have developed through their prior classroom experiences. For example,
senior secondary students studying calculus could reasonably be expected to
perceive A’(t) = 25t – c as one composite mathematical entity which they can
chunk, whilst a student at the beginning of secondary school would be more
likely to perceive and process the individual symbols separately. Krutetskii’s
(1962/1969) observations support this. Language and cultural factors also
contribute to this differential ability to extract relevant information from the
task presentation.

Theories of problem-solving processes and of language comprehension
processes unite in analyses of written mathematical task representations. For
example, situation-based reasoning plays a central role in Nathan, Kintsch,
and Young’s theory (1992) of algebra word problem comprehension
incorporating Kintsch’s (1988) model of text comprehension which is
specifically designed to cope with the effects of task context. These authors
view the comprehension and solving of word problems (and by extension,
applications tasks) as entailing the construction of three mental
representations of the problem: (a) a textbase representing textual input, (b) a
situational model of the events described in the problem statement and
inferred or elaborated from it using the task solver’s general knowledge
base, and (c) a model of its mathematical structure (the problem model).
Accordingly, “a complete theory of problem solving must include the
language comprehension process, the resulting mental representations, the
role of inferences and real-world knowledge, and the necessary formal
calculations for deriving a solution” (Kintsch, p. 331).
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To understand a task completely, students must possess sufficient
relevant knowledge in LTM to adequately understand the situation
described, and appropriate strategies to generate necessary inferences and
elaborations to understand the situation fully. Such tasks are highly reading-
oriented. Lack of relevant prior knowledge and poor text comprehension
lead to serious errors (Nathan et al., 1992). According to the Nathan et al.
(1992) model, omissions from written mathematical models constructed by
students “match information that is unstated in the text but necessary for
complete understanding of the situation” (p. 334), whereas misspecifications
in the students’ models are often due to miscomprehension of the text or
misapplication of mathematical procedures.

Working Memory
The working memory system is vital for understanding how students perform
on complex tasks such as solving mathematical applications. This is because
task solvers must combine temporarily remembering information such as
problem states, goals, interim results, and appropriate strategies, with
processing and coordination of this information (Monsell, 1984). Working
memory contains the information that can be accessed currently. This
can include input from the sensory system, information retrieved from long
term declarative memory (i.e., the storage for facts, concepts, and beliefs),
information produced from the primary external source, or secondary
productions of information from processed information or secondary external
sources (Fong, 1994). Differences among theoretical working memory models
provide different predictions for the effects of practice of procedures or skills,
irrelevant and redundant information, and use of differing modalities (e.g.,
visual or auditory) on the load on working memory.

Carlson, Khoo, Yaure, and Schneider (1990) have found that “use of
working memory in problem solving changes substantially with practice,
but the nature of that change cannot be characterized as a simple reduction
in storage or processing demands” (p. 213). At first, all information for task
performance must be loaded and maintained in working memory by control
processing and temporary context storage. At modest levels of practice,
permanent knowledge about the task should reduce the need for control
processes to load working memory. Only after extended practice are
automatic processes sufficient for loading and maintaining information, but
attention is still needed to access and manipulate information. The results of
Carlson et al. (1990) “support the view that coordinating or integrating
representations is a separable component of complex skills” (p. 214). This is
in keeping with Schneider and Detweiler’s (1988) claim that, once a modest
degree of skill has been achieved through practice, the central constraint on
performance is coordination of multiple items of information.

Carlson, Sullivan, and Schneider (1989) review predictions for the
impact of irrelevant information on the load on working memory. In single
workspace models (e.g., Atkinson & Shiffrin, 1968), if this information is
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stored in working memory these models predict interference even if the
knowledge is not accessed because activation has to be distributed over all
elements. In a distributed model (e.g., Baddeley, 1997; Schneider &
Detweiler, 1987), no interference is predicted if the information is merely
stored and not accessed, as separate subsystems are available for storage and
for processing. If the irrelevant information is held in working memory and
accessed, cost of access is minimal for single workspace models as storage
and processing take place in the same cognitive workspace, and only
coordination of representations is required if the data are in different forms
such as a graph and text. With distributed systems, access costs are high as
coordinating representations requires establishing communication between
separate subsystems or regions.

Similar effects are predicted for redundant information. Sweller (1992)
claims that “when redundancy occurs integration has negative
consequences” (p. 59). He bases this on a non-mathematical research study
(Chandler & Sweller, 1991) in which it was found that the use of a diagram
and a verbal description, when both sources of information could stand
alone, had negative rather than positive or neutral effects. At the very least,
this work indicates that redundancy cannot be considered to be neutral. The
redundant information acts as a distractor using up cognitive resources
needlessly as task solvers mentally integrate information.

It appears that coordination and integration of information and
representations, and allocation of attention resources are of vital importance
to the efficient functioning of WM, especially when solving tasks such as
mathematical applications which potentially require skills of different
degrees of practice, contain irrelevant and redundant information, as well as
a variety of representations in the task presentation. The role of a central
executive in controlling and regulating these cognitive activities appears
compelling. At the metalevel then, it is argued that the framework must
include a monitoring and evaluation system, and that the metacognitive
activity that oversees these cognitive processes occurs in the WM. Executive
control decisions directed at controlling or monitoring cognitive activities
(such as planning how a task is going to be approached) may initiate
metacognitive strategies to monitor cognitive progress (Kluwe, 1987) or be
informed by metacognitive knowledge recalled from LTM. Executive
regulation decisions deal with the regulation of processing capacity, what is
being processed, processing intensity, and the speed of processing (Kluwe,
1987). Regulation decisions do not necessarily result in changes in cognitive
activity, as it may be decided to continue with the current activity.

In terms of the cognitive/metacognitive framework (Figure 1) then,
working memory is characterised as having an operational level and a
metalevel. At the operational level, mental operations are performed on
information, temporary storage is provided for the results of such operations
and other information, and the integration of information and
representations is performed. At the metalevel, coordination of the
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operational level actions occurs through planning, monitoring, and
evaluation decisions.

Long Term Memory (LTM)
Long Term Memory is no longer considered to be a single storage system but
is believed to be characterised by a number of systems which serve different
purposes and operate differently but not necessarily separately (Tulving,
1985). Tulving (1985) identifies three systems (procedural, semantic, and
episodic) but concedes there are probably many more. Procedural memory is
the system for storing knowledge of what can be done with facts, concepts,
and episodes as opposed to knowledge of what these entities are. It consists
of knowledge that has become automatic through practice (Bourne,
Dominowski, Loftus, & Healy, 1986). The contents of procedural memory are
not always open to conscious recall, nor can they always be expressed or
described (Taylor, 1991). Semantic memory stores general, encyclopaedic
knowledge of the world, and word meanings. The distinguishing feature of
this information is that it is not linked to an individual or a particular time or
place. Episodic memory is a memory system based on knowledge gained by
an individual through their own experience. It is, therefore, personal and
linked to events that happened at a particular time and place. Both episodic
and semantic memory are available for conscious recall during task solving
and can be readily expressed and described in interviews.

Two types of memory are involved in problem solving and higher-order
cognition—procedural and semantic memory (Bruer, 1993). However, as
task context usually plays an important role in applications tasks, episodic
memory may also play a significant role, as prior knowledge influences both
what students notice in a task and how it is interpreted. Information stored
in both semantic and episodic memory is the relevant knowledge in LTM
that Nathan et al. (1992), in their task comprehension model, refer to as
necessary for understanding a task.

Two types of mathematical knowledge are stored in LTM according to
Fong (1994): (a) information related to the recent content area of study or
information which is well rehearsed, and (b) knowledge of related
mathematical topics. Fong calls these Type A and Type B knowledge,
respectively, claiming that the former is more readily retrieved than the
latter. In keeping with this classification, two further categories are proposed.
Type C knowledge includes memories of prior knowledge of the task contexts
of applications of an encyclopaedic or experiential nature, word meanings,
and cultural knowledge including classroom culture. In most circumstances,
it is suggested that Type A knowledge is easier to retrieve than Type C. Type
D knowledge includes metacognitive knowledge about the person, task, or
strategies, as well as metacognitive experiences and knowledge of strategies
(Flavell, 1979). In the framework being proposed (Figure 1), LTM is shown as
consisting of: (a) procedural memory which stores both Type A and B
mathematical knowledge as well as Type D knowledge in the form of
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metacognitive strategies, (b) episodic and semantic memory which stores
declarative mathematical knowledge of both these types as well as Type C
knowledge, and (c) metamemory which is designated as storing Type D
knowledge consisting of metacognitive knowledge and experiences. 

The Study
This article reports part of a much larger study which investigated the effects
of context on students’ approaches to, and performance on, applications
tasks in the main pre-tertiary mathematics subject in Queensland secondary
schools, Mathematics B (QBSSSS, 1992). Specifically, this part of the study
addressed the following research questions: 

1. What conditions facilitate or impede students’ access to
applications tasks? These conditions may be: (a) inherent in the
nature of the task, or (b) conditioned by the local situational
context (e.g., classroom practices or teacher idiosyncrasies). 

2. What strategies are employed by students to: (a) overcome
accessing difficulties, or (b) take advantage of ease of access? Of
the strategies, which are: (a) cognitive, or (b) metacognitive in
nature?

Participants
The study was conducted in two public high schools in a large provincial
city. Data collection occurred in four phases over a six month period during
which contact with both schools was continuous. Forty-one students in the
last two years of high school (Years 11 and 12) participated. All students were
studying Mathematics B which is a two year integrated course in which
students study: applied geometry; trigonometric, periodic, exponential, and
logarithmic functions and their applications; introductory calculus and its
application; networks or linear programming; financial mathematics; and
applied statistical analysis. “The intent of Mathematics B is to encourage
students to develop positive attitudes towards mathematics by an approach
involving problem solving and applications” (QBSSSS, 1992, p. 2). Through
the study of mathematical applications in life-related situations, students are
expected to “develop a set of procedures to be used in approaching
modelling problems” (QBSSSS, 1992, p. 7).

Method
Administration of the Tasks
All students were videotaped as they attempted to solve applications tasks
individually, with each student completing up to four tasks. Students were
able to ask for clarification of words if needed. Examples of the tasks are
included in the appendix to this article. These tasks differed in terms of
familiarity, complexity, and degree of contextualisation. The requirement for
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unfamiliarity is that either “the context is unfamiliar while the techniques are
familiar” or “familiar techniques are combined in an unfamiliar way”.
Unfamiliarity implies that a student has to interpret the context and to decide
which techniques are to be applied to solve the problem. The choice of
techniques may not be immediately apparent to a student” (QBSSSS, 1994,
p. 1). The complexity of the task “depends on how obvious the choice of
techniques is, the number of techniques required, and the amount of
guidance given to students” (QBSSSS, 1994, p. 1). The term degree of
contextualisation is meant to convey the range of embeddedness that exists
between the mathematics that can be used to model a situation and the
description of the situation. This can range from the simple case where there
is virtually no integration of the model within the context, the context merely
acting as a border surrounding the mathematics which can be readily
removed without loss of meaning (e.g., Microwave Ovens Task, see
Appendix), to the situation where the two are totally integrated and
separation becomes difficult as the mathematics derives its meaning from the
context (e.g., Tide Task, see Appendix). Although the majority of the tasks
used in the study were closed rather than open-ended, the nature of some
tasks provided scope for students to move in the direction appropriate to
their perception of the problem. This occurred when tasks were more like
true modelling tasks than mere applications, or a fair degree of leeway was
allowed in students’ interpretation of the task.

Student Interviews
In total, 64 semi-structured, stimulated recall interviews were conducted and
recorded immediately following task completion. Some students did several
tasks. The videotapes of their task solving sessions were reviewed by the
students, in conjunction with the script of the task, during the interview.
Students were also asked to draw diagrams, when appropriate, to illustrate
their understanding of the task context and the task goal. Use of the
videotaped task solving sessions as a visual stimulus throughout the
interviews allowed both the interviewer and the interviewees to track the
students’ developing understanding of the task context by discussing their
changing perceptions of the task, as observed in their changing use of
diagrams throughout the review of the task solving session.

Analysis
All interviews and task solving sessions in which there were interactions
between the student and the researcher were transcribed. The interviews
were analysed using the qualitative data analysis software QSR NUD*IST
(Qualitative Solutions and Research, 1997). NUD*IST facilitates ‘grounded
theory’ construction (Strauss & Corbin, 1990) which attempts to capture and
interrogate the meanings emerging from data. This is achieved by
constructing and exploring new categories and themes as they arise from the
data, then refining these through a “process of progressive category

51



Stillman

clarification and definition” (Tesch, 1990, p. 86). This was done using a
variety of matrix displays.

Thematic conceptual matrices (Miles & Huberman, 1994) were used
initially to show conditions that facilitated or impeded task accessibility by
year level at School A, and the strategies that were used by students to
overcome, or avail themselves, of these conditions. An illustrative row of
such a table is shown in Table 1. The conditions entries in these matrices were
summary descriptive phrases, together with representative illustrative
quotes from the interviews to clarify their meaning, and indicators of the
extent and nature of multi-case activity for each cell in the table. The last of
these was shown by case numbers and references to illustrative NUD*IST
text-units (e.g., A06[Task 3] 15-21) from the interviews, or data from the task
tapes. All conditions included were confirmed by at least one case at the site
and were not contradicted by other cases. The strategy entries in these
matrices were interpretations of the behaviour observed during the task
sessions (indicated by the symbol, R), or statements by the students about
their thinking and actions during the interviews.

In order to focus on the content of the matrices and to view the data at a
more conceptual level to elicit the main trends across cases, a content-
analytic summary table (Miles & Huberman, 1994) was produced,
combining the conditions data from the matrices for both phases of the data
collection at School A (i.e., the Year 12 data and the Year 11 data). The new
tabulation deliberately dropped the case identification of data and the entries
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Table 1
Conditions and Strategies Facilitating Task Accessibility at School A (Year12)

Conditions Facilitating Task
Accessibility

Recognition of mathematical cues
– trigger words and visual features
“Like when I saw the k sort of thing,

the constant there, I knew that I had
to sort of find that to work out the
rest of the question.”

A06(Task3)15-21;
A09(Task5)14-16;
A13(Task5)12,67-70;
A17(Task5)12-14;
A18(Task7)76-80,112-112;
A48(Task5)13-17

Facilitating Strategies

Uses perception
(Procedural skill).

Metacognitive
Strategies

Cognitive
Strategies

Regulates what is being
processed by deciding
to focus attention on
particular stimuli and
not others. (R)
Confirms matching
of selected stimuli with
key elements in mental
schema. (R)

Note. The numbers following the task numbers are the text units of the NUD*IST documents.
(R) means inferred by researcher.
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were reduced to the summary phrases. To confirm the applicability of these
conditions to similar settings, the data from School B were categorised and
displayed in thematic conceptual matrices as before. A cross-site content-
analytic table was then produced where the entries consisted only of
conditions that were confirmed at both sites together with their frequency
of occurrence.

Results
Conditions Affecting Task Accessibility
As seen in Table 2, there were eight conditions facilitating task accessibility
which occurred at both sites. These have been grouped into three clusters in
order of frequency of occurrence: (a) Memory-related facilitating conditions
(39), (b) perceptual conditions (27), and (c) engagement conditions (14).
Thirteen conditions were confirmed as impeding task accessibility at both
sites. These have been clustered in Table 2 into five groups in descending
frequency of occurrence: (a) Language-related conditions (63), (b)
representational conditions (40), (c) memory-related impeding conditions
(32), (d) organisational conditions (25), and (e) task-specific conditions (6).

The major conditions (incidence rate ≥ 10) facilitating access to the
applications tasks used in the study were the recall of a similar or parallel
task, and prior knowledge of the task context (memory-related conditions);
the recognition of mathematical cues in the form of trigger words or visual
features, and being able to visualise the situation (perceptual conditions);
and engagement with the task context (an engagement condition). Minor
facilitating conditions included the mathematics involved in the solution of
a task being well rehearsed, metacognitive knowledge that encouraged
engagement with the task (memory-related conditions), and intuitive
instantaneous recognition of mathematical cues (a perceptual condition).

By far the most frequently reported conditions impeding task access
were: language problems related to technical language used in the context,
comprehension difficulties, and the unusual wording of tasks. A factor
contributing to the high incidence of this condition was the deliberate use
of longer verbal tasks in the study than the students were used to in the
classroom. Other major conditions (incidence rate ≥ 10) impeding task
accessibility were cuing words (of either a mathematical or contextual
nature) not being salient (a language-related condition); all the re-
presentational conditions, namely, inability to mathematise the context,
difficulties with the integration of given or derived contextual information,
and difficulties extracting mathematical information from the task context;
difficulties recalling a concept, formula, procedure or relevant prior
knowledge of the task context (a memory-related condition); and the
organisational condition involving difficulties formulating a plan of attack.
Minor impeding conditions included difficulties establishing a global goal
for the task, lengthy task statements, metacognitive person or task
knowledge discouraging access, the mathematics involved in a task not
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being recently studied (i.e., more than one month since last studied), the fact
that the mathematics involved in particular tasks was not obvious, and
interference from prior knowledge. A fuller description of these conditions is
provided in Stillman (1999, 2002).

Strategies Used to Exploit Conditions Facilitating Task Access
Several strategies were identified that students in the study were able to use
unassisted to take advantage of the conditions that were identified in the
cross-site analysis as facilitating task access.

Strategies for benefiting from facilitating memory-related conditions.
Students used retrieval strategies to recall all four types of information
identified in the Cognitive/Metacognitive Framework (see Figure 1) in order
to benefit from memory-related facilitating conditions. This is illustrated in
the following examples.
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Table 2
Cross-Site Content-Analytic Summary Table: Conditions Affecting Task
Accessibility

Facilitating Conditions

Memory-related Conditions
Similar or parallel task recalled (19)
Prior knowledge recalled (18)
Maths involved is well rehearsed (6)
Metacognitive knowledge encouraging
engagement with task (2) 

Perceptual Conditions
Trigger words and visual features
recognised (14)
Being able to visualise the situation (10)
Instantaneous recognition of
mathematical cues (3)

Engagement Condition
Successful engagement with task
context (14)

Language-related Conditions
Language problems (37)
Cuing words (mathematical or
contextual) not salient (19)
A lot of words in task statement (7)

Representational Conditions
Can’t mathematise task context (18)
Difficulties extracting mathematical
information from task context (10)

Memory-related Impeding Conditions
Difficulties recalling a concept, formula,
procedure or relevant prior knowledge
(15)
Metacognitive knowledge discouraging
access (8)
Lack of recency of maths involved (6)
Interference from prior knowledge (3)

Organisational Conditions
Difficulties formulating plan (16)
Difficulties establishing task goal (9)

Task-specific Conditions
Maths not obvious (6)

Impeding Conditions

Note. The numbers in brackets are the number of cases across sites that met this condition. Only
conditions that have been confirmed at both School A and B have been included in this table.
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I: (Petri Dish Task 1) You persisted a lot more than you did with the
other one [involving probability].

Jan: Yeah, maybe, it’s just because we did probability ages ago and the
unit that we have just been doing is on that. [Recall of Type A
information (information from a recently studied mathematical
topic).]

Ben: (Road Accident Task) I dredged into my memory and I remembered
a bisector of chords goes through the centre point. [Recall of Type B
information (information from a related mathematical topic but not
usually seen in the context of the question).]

I: (Road Construction Task) And what was at the top of the bank?
Kit: Umm, some existing properties.
I: And what did you interpret that to be?
Kit: People’s blocks like fence lines coming right to the top of the slope.

[Recall of Type C information (word meanings and general,
encyclopaedic knowledge of the world).]

Jan: (Petri Dish Task 2) Well, if I’ve got a question, a Maths question,
that has got a simple first part to it … that’s enough to get me into the
context of the question. [Recall of Type D information
(metacognitive task and person knowledge from metamemory).]

The only metacognitive activity reported in relation to this cognitive
activity was Ben’s local assessment of his state of knowing in the Road
Accident Task when he had to reconcile the prior knowledge of the task
situation he had recalled with the description of the task context.

Ben: (Road Accident Task) That was what I was worried about. How can
he brake when his brakes had failed? But they obviously failed here
[points to end of skid mark].

The researcher inferred that the choosing of a mathematical strategy on
the basis of having seen a similar or parallel task would have required
some comparative judgements to be involved and these constitute meta-
cognitive activity.

Strategies for benefiting from facilitating perceptual conditions. Cognitive
strategies that were used to take advantage of facilitating perceptual
conditions included recognition strategies, mental imaging strategies, and
perception.

I: (Shaft Task) Uhmm, now you saw that straight off as a derivative,
why is that?

Rob: Oh, when I saw it was D, ah, …
I: D prime or D dash?
Rob: Yeah, D dash t, I knew that was the first derivative of the function.
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Ann: (Ecosystem Task) I couldn’t visualise that one [referring to Road
Construction Task] but I could [this one] … I could actually know
what was going on.

Jo: (Road Construction Task) Umm, I knew it had something to do
with triangles straight away when I looked at it.

I: Why was that?
Jo: Because it was talking about angles and just when I read it the

picture I got in my head … just talking about slopes and everything
it formed a triangle sort of thing.

There was one reported example of a student monitoring the use of her
perceptual skills by making a local assessment of the accuracy of her
instantaneous recognition of mathematical cues.

Tui: (Fertilizer Task) I thought from the first, ‘Ah, it’s Simpson’s Rule’
but I was just trying to convince myself that it was. Intuition.

On other occasions, however, this phenomenon appeared to be
automatic with students not being conscious of having thought about their
thinking as Taylor (1991) would have predicted.

The researcher inferred that the cognitive activity described above had
the potential to initiate metacognitive activity to regulate processing
capacity, as executive decisions would need to be made about the amount of
information processing capacity allocated to various forms of processing
(Kluwe, 1987). For example, when mental imaging strategies were being
used the student would have decided that precedence be given to visual
processing. Recognition strategies would also involve executive decisions
about the regulation of what was being processed, as the student would have
to decide to focus on particular words or phrases or visual features at the
expense of others and confirm the matching of these with key elements of
schema recalled from memory.

Strategies for benefiting from facilitating engagement conditions.
Engagement with task context was facilitated by retrieval strategies to assist
in the recall of prior knowledge of the task context (Type C information in
Figure 1) and strategies such as elaboration to facilitate the integration of
contextual and mathematical information. The use of elaboration and the
recall of prior knowledge are evident in the following excerpt from the task-
solving session with Kay, when the researcher has been asked for assistance
with the Road Construction Task. The student is asked where the new lane
might be placed in the drawing she has made of the situation. She suggests
two possibilities and by listening to “the voice of ‘practical reasoning’”
(Wistedt & Martinsson, 1996, p. 178), obviously informed by her previous
experiences, correctly convinces herself that the second interpretation is the
better fit for the situation described in the problem statement (see Appendix).

I: (Road Construction Task) Now, where … If you are going to put
this new lane in, where will the new lane be?
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Kay: It would have to go like on the slope would it not? Or would they
have to drill out? Yeah, they would do that. So they would knock
that out and make that.

Whilst reviewing her task-solving videotape after the session she
elaborates further and it is obvious she sees her engagement with the task
context at this point as being crucial to her drawing a mathematical diagram
and solving the task.

Kay: And then you had to figure out like the highway would cut off
because you would have to blow up some of the ridge. So, I knew the
situation now with the bank and everything. I just wanted to label
everything so that I understood what it is.

I: Uhmm.
Kay: And I knew that you had to build the lane.
I: Yes.
Kay: And blow it up. So then that’s when I figured out, ‘Ok, so then

that’s what we have to do!’ And then I drew the diagram.

Strategies Used to Overcome Conditions Impeding Task Access
Strategies that students in the study were able to use unassisted to overcome
the conditions that were identified in the cross-site analysis as impeding task
access were also identified.

Strategies for overcoming language-related problems. Language related
conditions elicited the recall and application of a variety of comprehension
strategies such as re-reading, drawing a diagram, visualising, underlining
key words, selecting key features and points, prioritising information, and
processing “bit by bit”. Re-reading was by far the most commonly used of
these strategies.

Kay: (Road Construction Task) I’d read through that about a hundred
times.

I: Uhmm.
Kay: Just to try and figure out what it said and I knew that this was the

situation and I hadn’t messed it up finally.

Re-reading was not always successful by itself, so students used diagram
drawing, visualising, and information organising strategies to increase its
effectiveness.

Amy: (Road Construction Task) I had to read it like ten times and still I
am thinking, ‘All right, so how do I do this?’ But after I drew all the
pictures and stuff I thought, ‘Okay, this has got something to do
with Trigonometry.’

Greg: (Road Construction Task) [After interview, commenting on why
it took him so long to access the task.] You had to get a picture in
your head!

Bill: (Shed Task) At the start I thought it was going to be difficult
because I think I looked too hard and I couldn’t understand it.
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And was hard until I drew a diagram and then it was easier. Umm,
I think after I just drew the diagram then I was just … I understood it.

Strategies designed to organise information into a form that could be
more readily processed concentrated on reducing the amount of information
that had to be processed. This was done by selectively focussing attention on
what was considered important and ignoring the other data in the task
statement.

Amy: (Road Accident Task) Most of the information at the start is kinda
basically telling you what’s happened, like an introductory sort of
thing and then the information as you get towards the end is the more
important stuff. I didn’t really read the start too much, probably
twice and then I read through the vital information.

An alternative strategy designed to assist with the organisation of
information for processing did not reduce the total amount of information
processed but focussed on the speed at which the processing was being done
by concentrating on a bit at a time.

I: (Road Construction Task) When you first saw the question what
was your initial reaction to it?

Ann: I’m thinking … umm … I thought, ‘Well, I’d better go through this
bit by bit to understand it.’

It was inferred by the researcher that cognitive activities such as re-
reading, drawing a diagram, and visualising could initiate metacognitive
activity of a regulatory nature. In particular the regulation of processing
capacity involves executive decisions about the amount of information
processing capacity that needs to be allocated to the various mental
operations involved, that is, reading, creating a visual image, and those
associated with the transformation of the mental image into a drawing.
There was the potential for executive control decisions to be involved as
students monitored the state of their understanding of the problem during
re-reading of the task statement. Information organising strategies, as
mentioned above, also had the potential to elicit metacognitive strategies
related to the regulation of what was being processed in which order, whilst
deciding to process “bit by bit” was expected to involve metacognitive
strategies designed to regulate the speed of information processing.

Strategies for overcoming representational problems. Cognitive strategies
that were used to overcome representational problems arising from students
not being able to mathematise the task context or to extract mathematical
information from the task context consisted of selectively focussing attention
on relevant aspects of the problem presentation by re-reading, visualising, or
re-drawing a pictorial representation of the task situation. 

Sue: (Petri Dish Task 2) … until I read this last sentence, when I started
reading, ‘Oh, that was the rate’, umm, not the rate, ‘the area’. You
like got given the rules, yeah. Then when I like got to this sentence
and I re-read it I realised, I thought of that first. It was just like, it
just seemed logical …
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Bea: (Petri Dish Task 1) So, I thought the growth rate must have been
like a derivative or something.

I: Yes.
Bea: And then I thought I was imagining the function of it.
I: Yes.
Bea: And then I was thinking, ‘Well, what is the gradient? The gradient

is the rate of change and that is actually the growth rate.’ So.
I: Yes, yes.
Bea: So, that would have been the derivative of it.

I: (Road Construction Task) Now up in the top corner what you were
saying was, ‘Now, I’m not certain I’ve got this,’ so you were going
back writing and drawing the picture of what you thought was
happening?

Alice: Uhmm [agreeing].

In order to overcome representational problems resulting from
difficulties integrating given or derived contextual and mathematical
information, students used cognitive strategies such as constructing a mental
representation or creating a visual representation such as a diagram or graph
where they were forced to integrate the various pieces of data.

Bill: (Shed Task) Umm, there I am just reading the thing. Just reading
the question and just drawing the diagram trying to match the
question up just so it is easier to visualise. 

Use of these cognitive strategies instigated a number of the reported
incidences of metacognitive strategies being used to monitor cognitive
activity. These included self questioning to provide the student with
information about the status of their cognitive activity at a particular point in
the task solving process, using visualising to check the progress of the results
of cognitive activity and evaluating the adequacy of actions when trying to
mathematise a context.

Sue: (Petri Dish Task 2) What exactly the question was asking and like,
‘Where am I going? Why was I …’

I: Heading in the particular direction?
Sue: Yeah.

Elle: (Hockey Task) Well, I was pretending I was a hockey player and, umm,
you know the angle you had to view the goal.

I: Yes, and that was useful in checking what you were doing, was it?
Elle: Uh-huh, yeah.

Kym: (Shed Task) I thought, ‘That can’t be right’ because, you know, it is
not joining the side. You know, I thought, ‘Well, it has to be a
triangle.’

The researcher inferred, however, that the cognitive activity mentioned
also had the potential to initiate metacognitive activity that was regulatory.
This may have involved the regulation of processing capacity by making
decisions about how much information capacity was to be allocated to
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reading, visual imagery and the transformation of a mental image to a
written representation such as a diagram or a graph. The integration of
information would also be expected to involve some sort of coordination of
different representations in working memory (Carlson et al., 1990).

Strategies for overcoming memory-related problems. Retrieval strategies
were mainly used to overcome memory related impeding conditions,
although in a lot of cases these problems were not overcome. Tom, for
example, was having difficulty remembering his trigonometrical ratios. He
decided to recall all of the trigonometry he could, then, by a process of
elimination, figured out which concept applied.

Tom: (Rugby Goal Task) I was trying to, umm, I was trying to remember
all the trigonometry that I had done before.

I: Yes.
Tom: Because I haven’t done it for … I haven’t done it for a month

or something like that.
I: Yes. And that’s what you were … you were looking at all the

trig ratios and trying to work out which one was relevant?
Tom: Yeah.

Mary’s belief that tides repeated every 12 hours, recalled from her
encyclopaedic knowledge of the world, interfered with her use of the data
given in the Tide Task until she was able to overcome this by recalling the
problem conditions and correcting her error.

Mary: (Tide Task) It was 12 hours 30 minutes and I would have assumed
it was 12.

I: Now what did you have to rub out for?
Mary: I just plotted the point in the wrong spot.
I: What told you it was out of place? How did you realise it was out

of place?
Mary: Umm, I just reminded myself it was 12 and a half hours and not 12.

The recall of metacognitive task and person knowledge (Flavell, 1979)
that discouraged task access was combated by strategies that were specific to
the particular case involved. Jenny, for example, was reluctant to begin the
Ecosystem Task because of the format of the task (one A4 page of text and
diagrams) which was not her preferred style, but, after recalling and
applying comprehension strategies, she chose to ignore this and began to
solve the task.

Jenny: (Ecosystem Task) When I got down here I realised what it was on
about and so I picked it up.

This would also have involved an evaluation of her confidence in her
understanding of the task. Similarly, Rob, who was approaching the Shaft
Task with caution because it involved derivatives which he felt he was not
very adept at using, chose to ignore this when he found he was proceeding
with ease after tentatively beginning the problem.
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Rob: (Shaft Task) After I got started on this one I found it to be fairly easy
to complete.

Strategies for overcoming organisational problems. Both cognitive and
metacognitive strategies were in evidence when students attempted to
overcome difficulties experienced in formulating a plan of attack. Bob
recalled and applied the strategy of drawing a diagram in an effort to
formulate a plan.

I: (Road Accident Task) What were you thinking about possible plans
of attack before you started doing that?

Bob: I had no idea. I thought if I drew this something might come into
my head.

Greg was more successful formulating a plan for the task he was
attempting, however. He used an information organising strategy which
enabled him to focus on particular aspects of the task and thereby produce a
viable plan.

I: (Ecosystem Task) Now, at this stage, had your thoughts crystallised
as to what you were going to do with this?

Greg: Sort of … I thought that maybe if I wrote it down that maybe it would
be clearer to me.

I: So, you write it all out and then … ah … Now, I think you are sitting
there and having a good think before you start doing anything.
So, at this stage what are you thinking of doing?

Greg: Awh, I was trying to actually see if I could put what I had written
down into like a formula type thing.

Metacognitive strategies were brought into play by another student
trying to select possible techniques to use and a global strategy to begin. In
the Ecosystem Task, Ann made a local assessment of her confidence with the
use of a particular strategy before rejecting it. 

Ann: (Ecosystem Task) I thought I might have a look at the proportion of
how much because it said, ‘Will it still stay the same?’ Umm, I was
having a look at the proportion of each. How much they’ve
dropped down to and how much they have gained there and then
I thought, ‘I am not too confident working in this area so I’ll try
something else.’

She also rejected an alternative plan after evaluating its time
effectiveness.

Ann: … from that stage I was going to work out each division that he had
lost on the way down but then I figured that that would take too
long …

In the Hockey Task, she used verbal mediation to decide on using a
divide and conquer strategy to attack the problem.

Ann: (Hockey Task) I’m thinking, ‘I know how to do this but I have to work
out which part I have to do first and then work out the other parts.’
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None of the strategies that students tried to employ to overcome
difficulties establishing a global goal for the task were successful.

Strategies for overcoming task-specific problems. The one task specific
condition that occurred at both sites was the emergence of problems that
developed from the fact that the mathematics to be used was not obvious in
tasks such as the Road Accident Task, the Births Task, and the Fertilizer Task.
Only one student, Tui, was successful in overcoming this using a mixture of
perception and visualising.

Tui: (Fertilizer Task) I had to think a bit. I thought. I just read it and tried
imagining it in my mind what it was saying. And then I thought, ‘It
looks like an area problem. Find the area underneath the graph.’

Later she drew a graph of the table of values to confirm her intuition that
she should use Simpson’s Rule to find this area because, although she had
recognised it as an area problem almost immediately, she still had to work
out what mathematical techniques she could use to solve it and she did not
think this was obvious.

Tui: … you have to work out what you are supposed to be doing and
this one doesn’t exactly tell you what you are supposed to be
doing … actually I realise why I was drawing the graph. I was seeing
whether it was linear or not. If it was linear I was going to do …
to do trapezoidal. If it was like this I was going to do, umm,
extended Simpson’s and it was obviously like that so I was going to
do extended Simpson’s. Actually, actually I thought … I thought
from the first, ‘Ah, it’s Simpson’s rule!’ but I was just trying to
convince myself that it was.

Discussion
The cognitive/metacognitive framework in Figure 1 proved useful in
identifying and examining the conditions that facilitated or impeded task
access for the students in the study through an analysis of students’
responses to the tasks. When the conditions facilitating task access are
examined some conditions appeared to reduce the difficulty level of a task
for particular students whilst others contributed to reducing the complexity
of the task. The conditions that reduced difficulty were either personal in
nature (e.g., being able to visualise, possessing metacognitive knowledge
that encourages task access, prior knowledge of the task context) or
attributes of the task that were susceptible to individual variation when a
particular student interacted with the task (e.g., how recent a particular piece
of mathematics required in the task has been studied, or how well rehearsed
the required mathematics is). On the other hand, the complexity of a task
appeared to be reduced by particular attributes of the task (e.g., the presence
of salient cues (Kaplan & Simon, 1990) in the form of trigger words or visual
features). Similarly, impeding conditions that increased the difficulty of a
task for particular individuals often resulted from the interaction of a
student’s personal attributes with the attributes of the task (e.g., reluctance
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to make assumptions, cuing words not being salient, recall difficulties,
interference from prior knowledge, metacognitive task knowledge which
discouraged access) but sometimes were purely personal (e.g., possessing
metacognitive personal knowledge that discouraged access). Impeding
conditions that increased the complexity of the task were task attributes such
as the mathematics or the goal of the task not being obvious, the need to
integrate given and derived contextual information in order to construct a
mental representation of the situation described in the task, or the need to
make assumptions in order to formulate a mathematical model for the task.

It is suggested that task difficulty may vary from student to student
whilst task complexity appears to be fixed as it is determined by the
attributes of the task. This is in agreement with Williams’ (2002) distinction
between these two terms. It is foreshadowed, however, that these attributes
may be related to particular solution methods rather than the task per se
(e.g., one solution approach may require a deeper level of integration of
information than another). Personal attributes of the student also appear to
act as intervening conditions between task complexity and task difficulty.
These would explain the different consequences that occur (e.g., different
difficulty levels or whether or not impeding conditions were overcome)
when different students attempt tasks of the same complexity. These points
will be investigated in the future.

For students to benefit from facilitating conditions in applications tasks,
they need: a well-developed repertoire of cognitive and metacognitive
strategies as well as a rich store of mathematical concepts, facts, procedures,
and experiences; vicarious general encyclopaedic knowledge of the world
and word meanings; and truly experiential knowledge from personal
experiences outside school or in more practical school subjects. In particular,
a variety of retrieval, recognition, mental imaging, perceptual, and
integration strategies, together with metacognitive strategies for monitoring,
regulating, and coordinating the use of these cognitive strategies are
necessary. As suggested by Nathan et al. (1992), the tasks in this study are
highly reading-oriented and thus rely on: (a) accessing a good store of
relevant prior knowledge for generating the inferences and elaborations
necessary for understanding the situation fully, and (b) good comprehension
skills to enable the student to specify a valid problem model for the task
through the application of mathematical procedures. In some instances use
of both cognitive and metacognitive strategies was enhanced by students
(e.g., Elle in the Hockey Task) imagining or pretending to be in the situation
described, confirming Van den Heuvel-Panhuizen’s (1999) assertion cited at
the beginning of this article. This facilitation of access was also enhanced by
the development of metacognitive knowledge which encouraged students to
engage with the task (e.g., Jan in Petri Dish Task 2). However, once a modest
degree of skill has been achieved in accessing complex tasks such as
applications, the work of Schneider and Detweiler (1988) and Carlson et al.
(1990) point to coordination and integration of multiple representations,
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further cues, and mathematical processes and procedures as becoming
critical as the solution attempt progresses.

Amit (1994) has warned that “as assessments become more complex and
more connected to real-world tasks there is a greater [chance] that the
underlying assumptions and points of view may not apply equally to all
students” (p. 15) and this has been borne out in this study. Failure of a
student to possess a well-developed strategic repertoire or rich store of
mathematical, encyclopaedic, semantic, or experiential knowledge can lead
to the situation where conditions that facilitate one student’s access to the
task become impeding conditions for another student. For example, a task
such as the Road Construction Task, which has apparently obvious
mathematical and contextual cues for one student (e.g., Jo) may prove to be
inaccessible for another who does not have the appropriate knowledge base
or fails to activate an appropriate knowledge base because of a poorly
developed strategic repertoire. If the student does have the appropriate
knowledge and strategic bases but fails to activate either initially, the student
(e.g., Greg) may experience an initial period of difficulty but then overcome
the impeding condition. At other times, particular attributes of an
applications task, such as unusual wording, a lengthy problem statement, or
the required mathematical model or method not being obvious, can impede
access. These difficulties can be overcome, however, by students possessing
and activating a well-developed strategic store together with an appropriate
knowledge base. A wide variety of cognitive strategies that include retrieval,
comprehension, information organising, attention focussing, information
representing, and visualising are necessary for overcoming the potential
array of impeding conditions that a student may encounter in attempting to
access an applications task. The effective use of these strategies is enhanced
by an equally rich and varied store of metacognitive strategies.

Conclusion
The current emphasis on real-world applications, for whichever combinations
of the reasons identified by Blum and Niss (1991), has made the task of
assessing student performance in mathematics even more problematic as
students grapple with the confounding effects of task context knowledge
and the need for higher text comprehension skills. Teachers are being asked
to teach in new ways and assess in new areas which are different from those
in which they learnt mathematics themselves and were educated as teachers.
The purpose of this article has been to identify the strategies that students
employ in taking advantage of conditions that facilitate access to applications
tasks or successfully overcoming conditions that impede access initially.
By documenting these strategies and conditions affecting task access, teachers
are provided with the means to develop learning experiences that focus on
reducing the time students spend on these orientation activities (Stillman &
Galbraith, 1998) during task solution, and this should have a positive effect
on students’ ability to access the tasks during assessment. Such learning
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experiences should promote the development of: (a) cognitive skills that ensure
more effective problem representation and analysis, and (b) metacognitive
strategy knowledge which facilitates appropriate decision making during
orientation, and coordination and monitoring as the solution progresses.
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Appendix: Examples of Application Tasks
Tide Task: Greenough-on-Sea has an ideal deep water harbour for
transportation of goods by sea. The depth of water at any point in the
harbour varies with the rise and fall of the tide. The major limitation of this
harbour is that during certain parts of the year the depth of water at the
entrance to the harbour is shallower at low tide than necessary for some
ships to enter the harbour. Water depth is no problem at the wharf all
year round.

On a particular day the depth of water at the entrance at high tide is
8 metres and the time between successive high tides is 12 hours 30 minutes.
A low tide at the harbour entrance occurs at 12 noon and the depth of water
is only 4 metres. A ship drawing 5 metres below the water-line arrived just
outside the entrance at 11 am. The ship entered the harbour as soon as
it could. If it took four and a half hours to enter, unload, load and sail back
to the harbour entrance, what was the depth of the water at the harbour
entrance when it left? Fully justify your answer stating any assumptions
made. (Teacher constructed task.)

Road Construction Task: A new traffic lane (of minimum width 6 metres)
is to be added to a section of highway which passes through a cutting. To
construct the new lane, engineers need to excavate an existing earth-bank at
the side of the roadway which is inclined at 25˚ to the horizontal. This will
make the inclination steeper. Local council regulations will not allow slopes
greater than 40˚ due to the potential for erosion. Determine if the new traffic
lane can be excavated without expensive resumption of the properties at the
top of the bank which is 7 metres above the road surface. [List any
simplifying assumptions you have had to make.]

Microwave Ovens Task: The number of radioactive emissions from a
certain faulty microwave oven is given by N1 = 64(0.5)t at t years from the
first time of use, and the number from another faulty microwave oven is
given by N2 = 415(0.0625)t at t years from the first time of use. Find out when
both microwave ovens will emit the same number of radioactive units.
(Teacher constructed task.)

Road Accident Task (Adapted from Smith & Hurst, 1990, pp. 67-80.): A car
screeched round a bend and ended up in the ditch by the side of the road.
The police were called and when they arrived they made detailed
measurements of the skid marks left on the road by the car. These
measurements were used to draw a plan of the scene of the accident as
shown below.
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(All distances were measured in metres.) The police also measured the
incline of the road and found that this particular stretch was flat. 

When a car moves round a curved path with its wheels rotating but
slipping sideways as in the accident above, a simple model to obtain its
speed is to use the equation: s2 = dr where s is the speed, d is the drag factor
for the road surface and r is the radius of the curve. Test skids conducted at
the scene found the drag factor to be 6.64 m/s/s.

Using the data above the police determined the driver’s speed allowing
a 10% error in the final calculation in the driver’s favour (to compensate for
any errors in measurement). Did the police calculations show that the driver
was telling the truth about the speed of the car? 

Appendix

When interviewed the driver said that the car’s brakes failed as he came
into the bend and so he could not slow the car down. He also said that he
was driving at about 45km/hr (the speed limit for that road) when he
entered the bend. An examination of the car confirmed that the brakes were
not working at the time of the accident.

A reference line was used to measure the skid marks. The distance x was
measured along the reference line and the distance y perpendicular to it. For
the outer skid mark the values obtained were:
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Examples of Application Tasks

Petri Dish Task 1. A bacterial culture is being produced in a petri dish
containing a culture medium. If the area covered by the culture is given by
A = 1.2 te – 0.01t where t is the time in hours since it began to grow, find the
number of hours until the bacteria stop spreading.

Petri Dish Task 2. A bacterial culture is being produced in a petri dish
containing a culture medium. The area covered by the culture is given by
A = 1.2 te k t where k is a constant and t is the time in hours since it began to
grow. If the area was 1 square unit when t was 0.913 hours, find the number
of hours until the bacteria stop spreading.

Shaft Task. The diameter of a cylindrical shaft is gradually reducing
through wear. The rate at which the diameter is changing is given by D’(t) =
– 0.144 t 2 mm per month for t > 0. After 1 month of continuous use the
diameter is 500.12 mm. How many months will the shaft have been in use
before the wear is 1 mm?
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