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Gifted Today but Not Tomorrow?  
Longitudinal Changes in Ability  

and Achievement During Elementary School
David F. Lohman and Katrina A. Korb

The term gifted implies a permanent superiority. However, the majority of children 
who score in the top few percentiles on ability and achievement tests in 1 grade do not 
retain their status for more than a year or 2. The tendency of those with high scores 
on one occasion to obtain somewhat lower scores on a later occasion is one example of 
regression to the mean. We first summarize some of the basic facts about regression to 
the mean. We then discuss major causes of regression: errors of measurement, indi-
vidual differences in growth, changes in the content of the developmental score scale, 
and changes in the norming population across age or grade cohorts. We then show that 
year-to-year regression is substantial, even for highly reliable test scores. Different ways 
of combining achievement and ability test scores to reduce regression effects are illus-
trated. Implications for selection policies and research on giftedness are also discussed.

Longitudinal studies of intellectually exceptional students have pro-
duced some of the most important findings in the field of gifted educa-
tion (Lubinski, Webb, Morelock, & Benbow, 2001; Terman & Oden, 
1959). However, there is a paradox in the literature on the relationship 
between estimates of ability in childhood and accomplishments in 
adulthood. On the one hand, in any group of children, the child who 
obtains the highest score on a measure of scholastic aptitude is the one 
who is most likely later to attain the highest level of academic excel-
lence. On the other hand, the student who obtains the highest score is 
also the person whose test score at some later date is most likely to show 
the greatest amount of regression to the mean. How is this possible?

Statistically, the paradox of high aptitude being associated 
both with high accomplishment and large regression effects merely 
restates what it means for two variables to be imperfectly correlated. 
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The problem, however, is that the sort of probabilistic thinking that 
is captured in correlations runs counter to the tendency to think cat-
egorically about labeled concepts. We speak of learning-disabled or 
gifted students as if there were sharp boundaries separating individuals 
in the categories from those outside of them. Even those who under-
stand that the boundaries are arbitrary often think that if we agreed 
on the location of the category cut points and had perfectly reliable 
and valid measures, then category membership would remain con-
stant over time. In the case of academically advanced children, the 
expectation is that if we could measure giftedness well, then the child 
who is considered gifted at age 6 would still be considered gifted at 
16. If retesting the child at age 8 or 10 suggested a lower score, the 
typical reaction would be to question either the dependability of 
scores (especially the latter, lower score) or the validity of the test 
that produced them. Indeed, it is common practice to administer 
different ability tests to individuals or groups in the hopes of iden-
tifying additional gifted students. The assumption is that any high 
score is legitimate, whereas lower scores underestimate ability.

Confusions about giftedness thus reflect more than a common 
fondness for typologies. They also result from assumptions about the 
nature of intellectual development and the characteristics of tests 
used to measure that development. For example, the assumption 
that the child whose performance is unusual at one point in time will 
be equally unusual at another point in time assumes (a) that errors 
of measurement do not substantially affect either test score, (b) that 
growth from Time 1 to Time 2 is constant for all who have the same 
initial score, (c) that tests measure the same mix of constructs at 
all points along the score scale that spans the developmental con-
tinuum, and (d) that the population of test takers is constant across 
time. To the extent that these assumptions are not true, then we will 
see a regression in scores from Time 1 to Time 2.

Regression to the Mean

Regression to the mean occurs whenever scores are not perfectly cor-
related. The amount of regression in standard scores can easily be 
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estimated from the correlation between the two sets of scores. The 
predicted score on Test 2 is simply ẑ z r2 1 12= × , where ẑ2 is the 
predicted standard score on Test 2, z1 is the standard score on Test 
1, and r12  is the correlation between the Tests 1 and 2.

The expected score at Time 2 will equal the score at Time 1 only 
if the correlation is 1.0 or if the standard score at Time 1 is zero (i.e., 
the mean). The lower the correlation, the greater is the expected 
regression. Indeed, when the correlation between two tests is zero, 
then the expected test score at Time 2 is the mean (i.e., 0) for all test 
takers. Although there is no regression at the mean (i.e., z1 = z2 = 0), 
the amount of regression increases as scores depart from the mean. 
Students who receive extremely high scores on Test 1 are unlikely to 
receive similarly high scores on Test 2.

The equation for ẑ2 can be used to estimate the expected regres-
sion in status scores such as IQs. The first step is to convert the IQ to 
a z score by subtracting the mean IQ and dividing by the population 
SD for the test. For example, if the mean is 100 and the SD is 15, 
then an IQ of 130 converts to a z score of 130 100

15
−  = 2.0. If the correla-

tion between scores at Time 1 and Time 2 is r = .8, then the expected 
z score at Time 2 is 2.0 × .8 = 1.6. This converts to an IQ of (1.6 × 15) + 
100 = 124. The expected regression is 6 IQ points. If the IQ were 
145, then the expected regression would be 9 IQ points.

The standardized scores used in the equation for ẑ2 may be inap-
propriate if the variance of scores is not the same across occasions.1 
This often occurs when using attainment scores (such as mental age 
or developmental scale scores) rather than status scores (such as 
percentile rank or IQ). Whether the variance of attainment scores 
increases or decreases over time depends on the nature of the abili-
ties that are measured, the dependent measures that are used, and 
how score scales are constructed. The variance of scores tends to 
decrease with practice when the domain is closed rather than open 
(Ackerman, 1989). A closed skill set is one that is relatively small 
and bounded. For example, learning to count to 10 is a closed skill. 
Learning mathematics is an open skill. The dependent measure also 
matters. For example, as individuals learn a new skill, the variance 
of accuracy scores often declines. However, response speed or other 
measures of learning and transfer can show improvements with addi-
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tional practice. Such scores may show an increase in variance with 
extended practice.

How tests are scaled can have a substantial impact on whether the 
variance of scores increases over time. For example, the Iowa Tests of 
Basic Skills, Form A (ITBS; Hoover, Dunbar, & Frisbie, 2001) and 
the Cognitive Abilities Test, Form 6 (CogAT; Lohman & Hagen, 
2001) were jointly normed on the same national sample. ITBS 
scaled scores show considerable increase in variance across grades, 
whereas CogAT scaled scores do not. This is because the ITBS is 
scaled using a growth model that assumes that individual differences 
in achievement increase over grades. The CogAT is scaled using the 
Rasch (1960) model that makes no assumptions about changes in 
score variance across time. These differences in scaling procedures 
are masked when status scores such as percentile ranks or standard 
age scores are reported.

Developmental psychologists recognize that regression to the 
mean is a pervasive phenomenon when retesting students (Marsh 
& Hau, 2002; Nesselroade, Stigler, & Baltes, 1980; Phillips, Norris, 
Osmond, & Maynard, 2002). Regression to the mean is also com-
monly cited as a problem when working with learning-disabled stu-
dents (e.g., Milich, Roberts, Loney, & Caputo, 1980). However, this 
statistical fact of life is less commonly applied to gifted students.2 
Many who recognize the problem often ascribe it entirely to errors 
of measurement (e.g., Callahan, 1992; Mills & Jackson, 1990). 
However, measurement error is only part of the picture.

Any factor that reduces the correlation between two sets of 
scores contributes to regression toward the mean. We discuss five: 
errors of measurement, conditional errors of measurement, differen-
tial growth, changes in the content of the developmental scale, and 
changes in the norming sample.

Errors of Measurement

Error is the most obvious contributor to regression toward the mean. 
Sources of error that might lower a score on a particular occasion are 
called negative error; they include factors such as temporary inatten-
tion or distractions when taking the test. Error can also contribute to 
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higher scores. Examples of positive error are lucky guessing or good 
fortune in having learned the solutions to particular items. These 
sorts of seemingly random fluctuations in behavior across situations 
are what most people understand as errors of measurement.

A larger source of measurement error for most examinees, how-
ever, is the particular collection of tasks and items that are presented. 
For example, the estimate one obtains of a student’s reasoning abili-
ties depends on the format of the task (e.g., matrices, analogies, or 
classification problems) and the particular sample of items presented 
in each of these tasks. Factor analyses of large test batteries commonly 
show that the loading of a test on its task-specific factor is often not 
much smaller than its loading on the factor that it helps define. This 
means that the scores on the test are as likely to reflect something 
specific to the task and measurement occasion as something that 
would be shared with other measures of the same construct. For this 
reason, measurement experts have long advocated estimating ability 
using tests that present as many items as possible in many different 
formats as possible. However, even when tests contain many items 
in multiple formats, one is almost never interested in the student’s 
score on a particular form of a test that is administered on a particu-
lar occasion. The ideal score would be one that is averaged across all 
acceptable conditions of observation: test formats, samples of items, 
test occasions, and other conditions of testing.

Several of these factors are varied when scores are obtained for rep-
resentative samples of students on different individually administered 
ability tests. Test tasks, test occasions, and perhaps even examiners or 
other conditions of testing vary. Correlations between individually 
administered ability tests range from approximately r = .7 to .85. For 
example, Phelps (in McGrew & Woodcock, 2001) reported a correla-
tion of r = .71 between the Woodcock-Johnson III General Intellectual 
Ability score and the Full Scale IQ on the WISC-III for a sample of 
150 randomly chosen students from grades 3 to 5. Flanagan, Kranzler, 
and Keith (in McGrew & Woodcock, 2001) reported a correlation of 
r = .70 between the Woodcock-Johnson III Brief Intellectual Ability 
score and the Full Scale Score on the Cognitive Assessment System. 
Roid (2003) reported a correlation of r = .84 between the Stanford-
Binet V and the WISC-III (see also Daniel, 2000). As shown later, cor-
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relations of this magnitude will result in substantial regression when 
students who receive a high score on one of these tests are adminis-
tered a different test. For example, given a correlation of r = .84, only 
about half of the students who score in the top 3% of the distribution 
on one test will also score in the top 3% of the distribution on the 
other test (see Table 1).

Averaging can reduce the impact errors of measurement. For 
example, one could compute the average of a student’s reading 
achievement scale scores or ability test scores across 2 years rather 
than using the score from a single testing. Averaged scores will 
regress toward the mean, and so the average of two test scores cannot 
be interpreted using the norms that are derived for a single admin-
istration of the test. But, even norms for individual test scores may 
be misleading. Norms for ability tests—especially nonverbal tests—
have changed dramatically over the past 40 years (Flynn, 1987, 
1999; Thorndike, 1975). Schools should not use published norms 
on ability tests that are inadequate (e.g., see Tannenbaum, 1965, on 
the Culture Fair Intelligence Test) or severely out of date (e.g., the 
Stanford-Binet L-M). When it is impossible to administer multiple 
tests of a particular construct, one should endeavor to use tests that 
present items in multiple formats rather than a single item format. 
Such tests typically have higher generalizability than those that use 
a single response format for all items. Finally, as shown later, aver-
aging scores on a domain-specific test of achievement and a test of 
reasoning abilities in the symbol systems used to communicate new 
knowledge in that domain can dramatically reduce the amount of 
regression in test scores.

Conditional Errors of Measurement

Although many researchers understand that the concept of error 
includes more than random fluctuations across test occasions, fewer 
understand that the amount of error in test scores is generally not 
uniform across the score scale. Formulas for estimating the standard 
error of measurement (SEM) from the reliability coefficient gener-
ally assume that the variability of errors is constant across score lev-
els. This is a reasonable assumption for most examinees. It is often 
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not a reasonable assumption for those who obtain very high or very 
low scores on the test.

Conditional errors of measurement are errors that depend on the 
location of a score on the score scale. The typical patterns of errors 
of measurement for raw and scaled scores on a fixed-length test are 
shown in Figure 1. As Figure 1 shows, the patterns are opposite for 
raw scores (i.e., number correct) than for scaled scores and other 
normative scores based on scaled scores (e.g., IQ scores). Differences 
in the patterns of errors for raw and scaled scores are caused by the 
way the scaling process expands the score scale at the extremes of 
the distribution. This means that passing or failing a single item will 
have a much larger effect on scale scores for those who score near 
the ceiling or floor of a test than for those who score near the mean. 
This most commonly occurs on tests in which all students in a grade 
are administered the same level of a test. The level of the test that is 
appropriate for the majority of students in a class will often be too 
easy for the most able students.

Tests that are scaled using Item Response Theory such as the Otis-
Lennon School Ability Test (Otis & Lennon, 2003) and the CogAT 
(Lohman & Hagen, 2001) typically report conditional errors of mea-
surement for scale scores. Conditional errors of measurement can be 

Figure 1. Conditional Standard Errors of Measurement for raw scores 
(dashed line) and scaled scores (solid line) on the CogAT (Form 6) 
Verbal Battery, Level A.
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(solid line) on the CogAT (Form 6)Verbal Battery, Level A.
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dramatically reduced by administering a higher level of the test to more 
able students. For example, consider the student who receives a Verbal 
scale score of 221 on CogAT. Table 5.7 in Lohman and Hagen (2002) 
shows that the error of measurement at this score is 14.8 on Level A of 
the test but only 7.4 at Level D. Thus, administering the higher level of 
the test halves the expected error of measurement.

Differential Growth Rates

If errors of measurement were the only factor that contributed to 
regression to the mean, no additional regression should occur after 
the first retest. Suppose that only students who obtain high scores 
on the initial test are selected. On average, scores would be expected 
to decline when the students were retested. After this first retest, 
however, scores would regress to the mean true (or universe) score 
of the group—some individuals getting higher scores on subsequent 
retests, some getting lower scores, but the mean true score staying 
the same. Put differently, the correlation between the initial test 
score and every subsequent retest would be the same. All of these 
correlations would estimate the reliability of the test. However, lon-
gitudinal studies of ability do not show this pattern. Rather, the 
correlations tend to decrease as the interval between test adminis-
trations increases (Bayley, 1949; Humphreys & Davey, 1988). For 
example, the upper diagonal of the matrix in Table 2 shows correla-
tions among Composite scores on the ITBS for 6,321 students who 
were tested every year from third grade to eighth grade (Martin, 
1985). The lower diagonal shows correlations among IQ scores for 
the same intervals estimated from Thorndike’s (1933) meta-analysis 
of 36 studies in which students were readministered the Stanford-
Binet after intervals that ranged from less than a month to 5 years. 
The pattern in both matrices approximates a simplex: High correla-
tions near the diagonal of the matrix decline as one moves away from 
the diagonal. Correlations are higher for the longer and therefore 
more reliable achievement test (median rxx' = .98) than for the Binet 
test (estimated rxx' = .89). The fact that correlations decline as the 
interval between tests increases means that factors other than error 
must affect retest scores on both ability and achievement tests.
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One possibility is differential rates of growth. A simplex pattern 
for correlations will be obtained as long as true-score gains are not 
perfectly correlated with the true-score base (Humphreys & Davey, 
1988). Put differently, year-to-year gains do not have to be random, 
as some have hypothesized (Anderson, 1939). Rather, they only need 
to vary across individuals. There is in fact considerable evidence that 
students show different patterns of growth on ability tests. For exam-
ple, McCall, Appelbaum, and Hogarty (1973) investigated changes 
in Stanford-Binet IQ scores for 80 middle-class children who were 
given the same test 17 times between ages 2½ and 17. IQ profiles for 
67 of the 80 children could be classified into one of five groups. The 
largest group showed a slightly rising pattern of scores over child-
hood. Other groups showed patterns of sharp declines or increases 
at different ages. In general, major shifts occurred most frequently at 
ages 6 and 10. Note that changes in IQ reflect changes in rank within 
successive age groups rather than changes in ability to perform tasks. 
IQ scores decline even if ability improves, but at a slower rate than 
age-mates who obtained the same initial IQ score.

Students’ growth on both ability and achievement tests from year 
to year is affected by maturation, interest, quality of instruction, out-
of-school experiences, and many other personal and social factors. 
For example, instruction that engages and appropriately challenges 
a student can result in cognitive growth that is larger than expected. 

Table 2 
Correlations Between ITBS Composite Scores   

and Binet IQ Scoresa

Grade 3 4 5 6 7 8
3 91 89 87 85 83
4 86 93 91 89 87
5 83 86 94 92 91
6 80 83 86 94 93
7 75 80 83 86 94
8 70 75 80 83 86

Note. Decimals omitted. 
aAbove the diagonal, from Martin, 1985; below the diagonal, from Thorndike, 1933.
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However, the same student may be placed in a classroom with many 
distractions in the subsequent year and thus show less growth.3

Although growth rates vary across individuals, the stability of 
individual differences in scores that average across tasks and domains 
is substantial. Indeed, Humphreys (1985) estimated that between 
the ages of 9 and 17, true scores on a test of general ability would 
correlate approximately r = .965 with true scores on the same test 
administered 1 year later. As he then put it:

It becomes easy to understand the belief in a fixed intelli-
gence when one looks only at the small difference in true 
score stability from year to year between an estimated [cor-
relation of .965] and the 1.00 required by [the assumption 
of ] a fixed intelligence. (p. 200)

Humphreys (1985) also showed that the correlation (r) between 
true scores across years could be estimated by ry, where y was the num-
ber of years separating the two test administrations. Thus, the esti-
mated correlation between true IQ scores at ages 9 and 17 is given by 
.9658 = .75. This means that about 60% of the children whose true 
scores fall in the top 3% of the distribution at age 9 would not fall 
above that cut at age 17. Of course, error in both tests would lower 
the observed correlation and thus result in substantially less stabil-
ity across time. We never know true scores, only error-encumbered 
observed scores. One-year retest correlations typically range from r = 
.8 to r = .9. If a parallel form of the test is used, then the correlation 
is even lower.

Changes in Score Scales

Both the magnitude and the interpretation of changes in scores 
are influenced by the psychological and statistical properties of the 
score scale. Quite commonly, the content of ability and achieve-
ment tests differs across score levels. One can reduce these effects by 
presenting items in a common format at all points on the scale, by 
checking to ensure that individual differences in items conform to 
a unifactor model, and by using scaling procedures that attempt to 
make the scale properties constant throughout its range. However, 
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none of these controls can guarantee that the units of the scale will 
indeed be uniform, especially at the extremes. For example, the fact 
that all items are presented in a common format does not mean that 
items require the same cognitive processes. Matrix tests use a com-
mon format. However, difficult items on the Progressive Matrices 
test require the application of rules not required on simpler items 
(Carpenter, Just, & Shell, 1990). Nor does the fact that a unidimen-
sional IRT scale can be fit to the data guarantee an equal-interval 
scale, especially when the full scale is constructed by vertically equat-
ing overlapping tests that are administered to examinees of different 
ages (see Kolen & Brennan, 2004).

Changes in the Norming Population

Longitudinal changes in status are easily confounded by nonrandom 
loss of cases over time. Although developmental psychologists rec-
ognize this as a potential confound in their own research, many who 
use test scores—particularly those normed on school children—
often fail to take into account the fact that a substantial fraction of 
low-scoring students drop out of school. Nationally, only about one 
third of students complete high school (Barton, 2005). Dropout 
rates also vary across ethnic groups, states, and grades. Dropout rates 
have decreased between 11th and 12th grade and increased between 
9th and 10th grade (Haney et al., 2004). The upshot is that rank-
within-grade cohort means different things at 12th grade than at 8th 
grade or at 4th grade. Because less able students tend to drop out at 
a higher rate than more able students, a percentile rank of 90 means 
better performance for 12th graders than it does for 8th graders.

Summary

For educational, psychological, and statistical reasons, test scores 
obtained by high-scoring students will change from year to year. This 
change reflects errors of measurement in the tests that are common 
to all and errors that are particularly severe for extreme scorers, differ-
ential growth of students from year to year, changes in the content of 
score scales or the tests, and systematic changes in the representative-
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ness of samples on which norms are derived. How large would these 
changes be as the result of the combination of these factors? One way 
to address this question is to set a criterion for giftedness and then 
either estimate (from correlations) or count (from scores) the number 
of students at later grades who would fail to meet the criterion. This 
has important implications for policy, such as how best to identify 
those students who will continue to excel, or how frequently schools 
should retest to determine eligibility for TAG services.

Estimating the Size of Regression Effects  
From Longitudinal Studies

One of the most important limitations of most longitudinal studies 
in the field of gifted education is that they follow only that portion 
of the population identified as gifted at one point in time. A better 
procedure, of course, would be to follow the entire cohort of students. 
However, longitudinal studies in which an entire cohort of students 
are repeatedly administered ability tests are rare, generally dated, and 
more often than not, quite small. For example, the classic Berkeley 
Growth Study (Bayley, 1949) had only 40 children. The Fels data used 
by McCall et al. (1973) had 80 subjects. Correlations computed on 
such small samples have large standard errors. For 40 cases, the 95% 
confidence interval for a population correlation of ρ = .65 is r = .43 
to r = .90. Further, the cases are often not representative of the popu-
lation. Even when samples are much larger, as in the Wilson (1983) 
study, differential dropout and variation in sample size across occa-
sions at best complicates and at worst seriously biases the analyses.4

Achievement tests, on the other hand, are often administered 
every year to large groups of students. If the sample is large, the data 
can be reweighted better to represent the population distributions of 
achievement. This can in significant measure control for nonrandom 
loss of cases over time. Large samples also mean that correlations are 
quite stable. Correlations among achievement test scores exhibit the 
same simplex structure that is observed for ability tests. This should be 
expected, given the high correlations between ability and achievement 
tests. Indeed, ability tests are probably best understood as achievement 
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tests that sample general reasoning abilities developed in a culture, 
whereas achievement tests sample those abilities specifically developed 
through formal schooling. The belief that ability and achievement 
tests measure (or ought to measure) qualitatively different constructs 
has inhibited the interpretation and use of both types of tests since the 
earliest days of testing (Lohman, in press-a).

Martin (1985) reported a longitudinal analysis of ITBS scores 
for 6,321 students who were tested every year from third to eighth 
grade. Prior to computing the correlations, Martin reweighted the 
data to better approximate the distribution of grade 5 Composite 
achievement for Iowa students. We used his correlations to estimate 
the percent of students who fell in the top 3% of the Reading Total, 
Language Total, Mathematics Total, and Composite score distribu-
tions at grade 3 who were also in the top 3% on each subsequent 
retest. (See Table 2 for Composite score correlations.) The estimates 
assume a bivariate normal distribution of each pair of test scores.5 
The results are shown graphically in Figure 2.

The greatest regression—which is largely due to errors of mea-
surement—occurs from Year 1 to Year 2. Only about 40% of the stu-
dents who had composite scores in the top 3% in third grade also 
scored in the top 3% in fourth grade. Note that this occurs in spite 
of the fact that Composite ITBS scores are highly reliable (K-R 20 rxx' = 
.98) and show substantial stability across years (r = .91 for grade 3 
to grade 4). As would be expected, regression effects were greater 
for the Reading, Language, and Mathematics subtest scores than for 
the Composite score that combines them. For each of these content 
scores, the fallout was approximately 50% in the first year. As the 
figure shows, however, regression continues at a slower rate across 
grades. This means that regression effects reflect more than errors 
of measurement. By eighth grade, the correlations indicate that only 
35–40% of those who scored in the top 3% at grade 3 would still 
score in that range.

The procedures that many schools use to identify exceptional 
students were not designed to cope with regression effects of this 
magnitude. Indeed, some use procedures that exacerbate these 
effects. Others, however, use procedures that, wittingly or unwit-
tingly, reduce regression effects.
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Regression and Common Identification Procedures

Schools use nominations, rating scales, and test scores in many differ-
ent ways when selecting students for participation in special classes 
for the gifted. In this section, we examine some of the more com-
mon rules. The first policy is to require a high score on two or more 
tests. We call this the “and” rule. The second possibility is to accept a 
high score on either of two or more tests. We call this the “or” rule. 
Although rarely employed, another possibility is to average scores 
across two or more measures. We call this the “average” rule. The 
three rules are illustrated in Figure 3.

The “And” Rule

Many TAG programs set up a series of hurdles and admit only those 
students who surmount all of them. For example, the potential pool 
of applicants is first restricted to those students who are nominated 
by a teacher or who score above a certain score on a screening test. 

Figure 2. Percent of cases in the top 3% of the grade 3 distribution also 
in the top 3% of the score distributions at grades 4 through 8 for ITBS 
Reading, Language, Mathematics, and Composite Total scores
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Composite Total scores
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These students are then administered a second test. Only those who 
exceed some score on the second test are admitted to the program.

There are both advantages and disadvantages to this procedure. 
The primary advantage is that it reduces the number of students who 
must be administered the second test. This can be important when 
the second test must be individually administered by a trained exam-
iner. The second advantage of the multiple hurdles procedure is that 
it decreases the amount of regression that will be observed on future 
occasions when compared to a selection rule that uses only one test 
or takes the highest score on any of several tests. However, as will be 
shown, this effect is only observed if both tests are used to validate 
student classifications on the second occasion.

The primary disadvantage of the “and” rule is that the procedure 
assumes that the two tests are exchangeable measures of the same 
construct. If the tests are not exchangeable, then the sample will 
be biased unless a very liberal cut score is used for the first test. For 
example, suppose that the first “test” is a teacher nomination scale. 
Students who do not conform to the teacher’s model of giftedness 
but who would have exceeded the cut score on the second test will 
not be considered for the program. This was one of the limitations of 
the Terman study (Terman & Oden, 1959). A second disadvantage 

Figure 3. Plots of the conjunctive “and” rule (left panel), the disjunc-
tive “or” rule (center panel), and the statistically optimal “average” rule 
(right panel).
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is that the selection rule is noncompensatory. A very high score on 
one test cannot compensate for a score on the second test that is just 
below the cut. Therefore, requiring students to score above a particu-
lar cut score on Test 1 and Test 2 restricts the number of students 
who are identified compared to a rule that admits on the basis of a 
high score on either test. But, by how much?

Table 1 shows the amount of regression to expect with various 
common cut scores for two selection tests that are correlated to dif-
ferent degrees. The table shows the proportion of students above 
a common cut score on both tests as the correlation between two 
tests varies from r = .5 to r = .975. For example, consider the case in 
which the common cut score is set at the top 3% and the correlation 
between the tests is r = .80. Table 1 shows that 45% of the students 
in the population who score in the top 3% on Test 1 are expected to 
score in the top 3% on Test 2. This means that 45% of the 3% who 
met the criterion on Test 1 or 1.35% of the total student popula-
tion will be admitted when a score in the top 3% is required on both 
tests.

If a more lenient cut score is used for the initial nomination 
procedure and the same cut score is used for the final admissions 
test (top 3%), then the effects are much smaller. Table 1 cannot 
be used to estimate these effects, because it assumes a common 
cut score.6 For example, once again assume that the correlation 
between Test 1 and Test 2 is r = .80. Suppose that we take the top 
10% of the cases on Test 1. The top 10% on the first test includes 
79% of the cases in the top 3% on the second test. An even more 
lenient criterion of the top 20% on Test 1 gets 93% of those who 
score in the top 3% on Test 2.

The policy implications are clear. If the goal is to reduce the 
number of students who must be administered the second test but 
to exclude as few of those who would obtain high scores on the 
second test, then one must use a lenient criterion on the screening 
test. This is increasingly important as the correlation between the 
two tests declines. If, however, both tests are equally reliable and are 
assumed to measure the same construct, then similar criteria can be 
used on both. Nevertheless, the proportion of students who clear 
both hurdles will be considerably smaller than the proportion who 
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clear either hurdle. The lower the correlation between the tests, the 
smaller this proportion will be. Finally, if the two tests are in fact 
exchangeable, then a compensatory model such as the “average” rule 
is more defensible.

The “Or” Rule

The disjunctive “or” rule has quite different effects. Table 1 allows 
one to estimate the effects of this rule, as well. As before, assume a 
correlation of r = .80 and a common cut score of the top 3%. Test 
1 admits 3% of the population. Test 2 also admits 3%, but 45% of 
these students (as Table 1 shows) were already admitted by Test 1. 
The remaining 55% will be new. Therefore, 3% + (.55)(3%) = 4.65% 
of the student population would be admitted. Changing the rule 
from “and” to “or” more than triples the number of students admit-
ted from 1.35% to 4.65%.

The disjunctive “or” rule is most defensible if the two tests mea-
sure different constructs such as language arts or mathematics. If pro-
grams (or acceleration options) are available in both domains, then 
one should seek to identify students who excel in either domain, not 
just those who excel in both domains. However, as is shown later, 
multiple measures of aptitude for each domain are preferred to a 
single measure.

The “or” is not defensible, however, when both tests are assumed 
to measure the same construct. For example, the test scores may 
represent multiple administrations of the same ability test or con-
secutive administrations of several different ability tests. Error of 
measurement is defined as the difference between a particular test 
score for an individual and the hypothetical mean test score for that 
individual that would be obtained if many parallel forms of the test 
could be administered. The highest score in a set of presumably par-
allel scores is actually the most error-encumbered score in that set. 
Therefore, unless one has a good reason for discounting a particular 
score as invalid, taking the highest of two or more presumably par-
allel test scores will lead to even more regression to the mean than 
would be observed by using just one score.
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The “Average” Rule

If both tests measure the same construct, however, the statistically 
optimal rule is neither “or” nor “and” but rather “average.” The “aver-
age” rule will admit more students than the restrictive “and” rule but 
fewer students than the liberal “or” rule. It allows for more compen-
sation than the “and” rule but less compensation than the “or” rule. 
The student who has a high score on one test but a score that is just 
below the cut on the other test will be admitted. Essentially, students 
are ranked on the basis of where they fall on the 45º diagonal in the 
plot of scores on Test 1 versus scores on Test 2 rather than either 
the X-axis or the Y-axis. However, because the average of two scores 
will immediately regress to the mean, fewer students will meet an 
arbitrary cut score than will meet it if just one test is administered. 
With a correlation of r = .8, for example, 2.4% of the students would 
be expected to have an average score that exceeded the cut score that 
admitted 3% on either test alone.6

Regression Effects on Subsequent Retest

One of the most important considerations for any selection rule is the 
extent to which it effects a reasonable compromise between obtain-
ing the most stable scores and the most valid scores. The most stable 
scores will generally be obtained by combining scores across different 
tests and occasions, with each weighted by its reliability. However, a 
score that averages across several domains will generally be less valid 
as a measure of aptitude for a specific domain than scores that cap-
ture the general and specific aptitudes needed to attain excellence in 
that domain. We discuss both of these issues but first focus on the 
stability of scores in the common scenario in which students must be 
nominated before they are tested. Do the admission test scores for 
these students exhibit greater stability than would be observed if no 
screening test had been administered? Intuitively, it seems reason-
able to expect less regression to the mean over time, say, in IQ scores 
for a group of students who were first nominated by their teachers as 
the most able students in their class than for a group identified solely 
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on the basis of their IQ scores. As we shall see, however, intuitions 
can be wrong.

To Nominate or Not to Nominate

Simulations provide a useful method for investigating the regres-
sion effects of different decision rules when more than two variables 
must be considered. Here, we investigated the typical scenario in 
which only those students who are nominated by a teacher take an 
intelligence test. As already demonstrated, the number of students 
admitted depends on the cut scores established for the nomination 
procedure and the correlation between scores on the nomination 
rating scale and the admissions test. To simplify matters, we assume 
that 10% of students with the highest scores on the nomination scale 
are administered the intelligence test. The cut score for the intelli-
gence test is set so that in an unselected population, 3% of the stu-
dents would be admitted. For an intelligence test with SD of 15, this 
would be an IQ > 128.

Nomination procedures vary in the extent to which they mea-
sure the same characteristics as the intelligence test. In this simula-
tion, we started with a population of 10,000 students. We varied the 
correlation between the nomination scale and the intelligence test 
from r = .1 to r = .9. A high correlation such as r = .9 simulates the 
case in which the nomination procedure is highly effective in iden-
tifying those who will obtain the highest scores on the intelligence 
test. The critical question is whether the nomination process reduces 
the amount of regression that will be seen a year later when the intelli-
gence test is readministered. We assumed that the correlation between 
these two administrations of the intelligence test was r = .8. Table 3 
shows the results.

The first column of the table shows the correlation between the 
nomination rating scale and the intelligence test. The second column 
of the table shows the number of students in a population of 10,000 
students who scored in the top 10% on the nomination scale and 
then obtained an IQ > 128 on the intelligence test. These are the stu-
dents who would be admitted to the program. When the correlation 
between the nomination scale and the intelligence test was r = 1.0, 
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then 300 students (i.e., 3% of 10,000) would be admitted. This simu-
lates the case in which the nomination procedure was not used and 
all students took the intelligence test. As the correlation between 
the nomination scale and the admissions test declines, many stu-
dents who would have obtained IQs greater than 128 on the admis-
sions test were excluded because they were not nominated. When 
the correlation is high, however, one might argue that many of the 
excluded students did not belong in the group in the first place and 
would be the students least likely to score above an IQ of 128 when 
the intelligence test was readministered 1 year later. The third and 
fourth columns of the table show that this is not the case. Although 
the nomination procedure reduced the number of students who 
were admitted, it did not significantly reduce the regression effects 
observed when the intelligence test was readministered 1 year later.

Table 3 
Effects of Nomination on Subsequent Regression  

to the Mean of IQ Scores

Correlation 
between nomina-

tion scale and intel-
ligence test

Number of students 
nominated with 	

IQ > 128a

Number of admit-
ted students with 

IQ score > 128 	
1 year laterb

Percent of admitted 
students with 	

IQ > 128 	
1 year laterc

1.0d 300 126 42

0.9 274 122 45

0.7 202 101 50

0.5 137 65 47

0.3 84 37 44

0.1 41 20 49

aNumber of students from a population of 10,000 scoring in the top 10% on the nomination 
scale and the top 3% on the admissions test. bNumber admitted scoring in top 3% on retesting; 
correlation between the two administrations of the admissions test was r = .8. c(Column 3/ 
Column 2) × 100. dA correlation of r = 1.0 simulates the case in which the nomination step is 
omitted and all students are administered the intelligence test.
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Note the important difference between this procedure and the 
case in which scores on the screening test (or nomination rating 
scale) and the admissions test are first combined and students are 
selected on the basis of their scores on the resulting composite. One 
of the easiest ways to combine scores is simply to sum them or aver-
age them, after first putting all scores on the same scale.7

Combining Ability and Achievement Test Scores

The identification of academically talented students ultimately 
resolves to the estimation of aptitude for rapid or advanced learning 
in the particular educational programs that can be offered. Aptitude 
is a multidimensional concept. It has cognitive, affective, and cona-
tive dimensions. The primary cognitive aptitudes for academic learn-
ing are current knowledge and skills in a domain and the ability to 
reason in the symbol systems used to communicate new knowledge 
in that domain. The primary affective aptitude is interest in the 
domain. The primary conative aptitude is the ability to persist in 
one’s pursuit of excellence. Different instructional programs require 
or afford the use of different aptitudes. One of the most important 
goals for research should be to better understand the relationships 
between those aptitude characteristics that can be measured prior 
to identification and that contribute to the prediction of success in 
different kinds of programs.

There is much research, however, on the critical importance of 
the two primary aspects of cognitive aptitude for learning—prior 
achievement and reasoning abilities. The best way to do this is to 
combine scores so that they best predict subsequent achievement. 
When done well, both immediate and long-term regression effects 
will be minimized. In this section we explore some basic options for 
achieving this goal. To do this, we need a longitudinal data set that 
has both achievement and ability scores for a large sample of stu-
dents.

Gustafson (2002) collected ability and achievement test scores 
for 2,362 students in a large Midwestern school district who 
were tested first in grade 4, then in grade 6, and again in grade 9. 
The ability test was CogAT Form 5 (Thorndike & Hagen, 1993) 
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and the achievement test was the ITBS Form K Survey Battery 
(Hoover, Hieronymus, Frisbie, & Dunbar, 1993). In order to illus-
trate how different selection models perform over time, we looked 
at high achievers in two domains: Reading (Reading Vocabulary 
plus Reading Comprehension) and Mathematics (Mathematics 
Concepts, Mathematical Problem Solving, and Math Computation) 
at fourth grade.

Table 4 shows the correlations across the three grades for the 
three batteries of the ITBS and the three batteries of CogAT. In all 
cases, the correlation between grades 4 and 9 was smaller than the 
correlation between grades 4 and 6 or between grades 6 and 9.

The solid line in the left panel of Figure 4 shows the percentage 
of high-achieving students identified on the fourth-grade reading 
test who also met the same percentile-rank cut score in sixth and in 
ninth grade. We could not use a criterion of the top 3% because of a 
ceiling effect on the grade 9 tests.8 Therefore, we selected the 7% of 
students with the highest scores at grade 4. As in the analyses of the 
Martin (1985) data, Figure 4 shows a dramatic decline in the percent 
of students identified at grade 4 who continued to score at or above 
the 93rd percentile between the first test (grade 4) and the second 
test (grade 6), and then a smaller decline between grades 6 and 9. 
The right panel of Figure 4 shows similar effects for Mathematics.

Table 4 
Correlations Across Grades for ITBS (Form K)  

and CogAT (Form 5) Scores (N = 2,363)

Test
Grades

4 with 6 6 with 9 4 with 9
ITBS

Reading 0.76 0.77 0.73
Language 0.77 0.72 0.67
Mathematics 0.74 0.73 0.67
Composite 0.86 0.84 0.79

CogAT
Verbal 0.81 0.80 0.75
Quantitative 0.75 0.77 0.71
Nonverbal 0.72 0.74 0.68
Composite 0.85 0.87 0.82

Note. Data from Gustafson (2002).
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Although current achievement is a critical aspect of academic 
talent, it is also important to consider other characteristics that indi-
cate readiness to continue to achieve at a high level such as reasoning 
abilities in the major symbol systems used in that domain, interest 
in the domain, and persistence. We did not have measures of inter-
est or persistence, but did have CogAT reasoning scores in verbal, 
quantitative, and figural domains. Therefore, we also looked at the 
linear combination of the three CogAT reasoning scores that best 
predicted ninth-grade reading.9 The percentage of top readers that 
would be identified using this estimate from CogAT scores is shown 
by the dashed line in Figure 4. Clearly, using predicted rather than 
observed reading achievement at grade 4 missed many of the best 
readers at grade 4. However, the figure shows that most of those who 
were missed did not fall in the top 7% of the reading distribution at 
grade 6. And by grade 9, grade 4 Reading and grade 4 CogAT scores 
both identified the same proportion of students who were still in the 
top 7% of the reading distribution. For mathematics (right panel of 
Figure 4), grade 4 Mathematics and grade 4 CogAT identified the 
same proportion of students still in the top 7% at grade 6. By grade 
9, the regression estimate based on grade 4 CogAT scores identified 
more of those who were in the top 7% of the Math distribution than 
did grade 4 ITBS mathematics scores.

Because both prior achievement and reasoning abilities function 
as aptitudes for learning, a more effective selection model would 
combine current achievement and reasoning abilities in the sym-
bol systems used to communicate new knowledge in the domain. 
Estimating achievement at grade 4 is straightforward. We used the 
child’s ITBS Reading Total and Mathematics Total scaled scores. 
But, which of the three reasoning scores from CogAT should we use? 
In previous analyses of this data, we estimated the optimal weights 
to apply to ITBS and CogAT scaled scores at grade 4 to predict 
achievement in reading and mathematics at grade 9 (see Tables 2 and 
3 in Lohman, 2005). These analyses showed that grade 9 Reading 
was best predicted by the grade 4 CogAT Verbal score, with minor 
contributions from the CogAT Quantitative and Nonverbal scores. 
Similarly, grade 9 Mathematics was best predicted by the grade 4 
Quantitative score, although both the Nonverbal and Verbal batter-
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ies contributed significantly, as well. Although we used the optimal 
weights, one can do about as well by using only the CogAT Verbal 
score to predict reading and the sum of all three CogAT scores (i.e., 
the Composite) to predict mathematics. This gave us two aptitude 
scores for each child in each domain: current achievement in that 
domain and a composite CogAT reasoning score for that domain.

Next, we combined observed achievement in fourth grade with 
our estimate of predicted achievement (in reading or in math) in 
ninth grade. Observed fourth-grade achievement and predicted 
ninth-grade achievement in reading or math were converted to stan-
dard or z scores and then summed. This ensured that both scores con-
tributed equally to the composite. We weighted each equally because 
our previous analyses showed that prior achievement and reasoning 
abilities made approximately equal contributions to the prediction 
of achievement at grade 9. For detailed instructions on how to cre-
ate and combine standard scores in a Microsoft Excel worksheet, see 
Lohman (in press-b).

The dotted lines in Figure 4 show how this selection variable 
performed. The largest effect was at grade 4. Although the compos-
ite score did not identify all the high scorers at grade 4, it did iden-
tify about 70% in reading and about 80% in math. At grade 6, the 
composite performed as well as grade 4 reading achievement alone 
and significantly better for math than grade 4 math achievement. 
By grade 9, the composite achievement-ability measure was the best 
predictor for reading and was about as good as CogAT scores alone 
for math.

As Figure 4 shows, there is a tradeoff between measurement of 
current achievement and aptitude for future achievement. Measures 
of domain-specific achievement best identify high performers at a 
particular point in time. However, many of these students do not 
continue to perform at the same stellar levels of achievement even 
after 1 year (see also Figure 2). On the other hand, although reason-
ing abilities do not identify all of the high achievers at a grade, those 
that they do identify are those who are most likely to continue as 
high achievers in subsequent years. Indeed, in mathematics at least, 
by grade 9 those with the highest predicted achievement based on 
grade 4 CogAT scores were even more likely to still be identified 
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as high achievers than those who were identified on grade 4 ITBS 
Math alone. The final set of analyses using both achievement and 
ability test scores suggests that a sensible policy for identifying tal-
ented and gifted students would combine both current achievement 
in particular domains and that combination of reasoning abilities 
that best predicts later achievement in those domains.

Policy Implications

The stability of test scores has important implications for educa-
tional policy. First, multiple scores should always be used to make 
educational decisions about gifted students. There are two ways that 
this could be done. Each student’s previous test scores could be taken 
into account when making educational decisions, such as considering 
achievement test scores over the course of a few years. For example, 
one could look at the average of scaled scores on the two most recent 
assessments.10 However, when scores are averaged, the cut score must 
be lowered: The more reliable average score will show some regres-
sion to the mean.

Multiple scores can also be used by combining both achievement 
and ability test scores that are administered at roughly the same 
time. Figure 4 shows that the average of ITBS achievement and the 
combination of CogAT scores that best predicted later achievement 
performed better than either measure alone in identifying those 
students who continued to exhibit academic excellence in particu-
lar domains. Schools should also investigate the use of measures of 
interest and persistence, although these measures should surely be 
given much less weight than measures of achievement and ability.11 
Combining scores that estimate different aptitudes needed for the 
development of future competence is the best way to identify tal-
ented students. However, judgments about aptitude are best made 
by comparing a student’s scores on the relevant aptitude variables 
to those of other students who have had similar opportunities to 
develop the knowledge, skills, interests, or other attributes sampled 
by the assessment (see Lohman, in press-b).
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Another important policy issue is the amount of time that 
should be allowed before students are retested for continued par-
ticipation in gifted programs. Applying the entries in Table 1 to the 
correlations reported in Table 2 suggests that 3 years is an outside 
limit (2 would be better), especially if the first test is administered 
during the early primary grades (K–2). Finally, because test scores are 
especially unstable for those students with extreme scores, students 
who would qualify as gifted based on one test will not necessarily 
qualify as gifted when retested even 1 year later. Therefore, instead of 
using terms that imply fixed categories, such as gifted, perhaps educa-
tors should use words that focus less on a fixed state and instead on 
current accomplishment, such as superior achievement or high accom-
plishment.

Conclusions

Our first goal in this paper was to summarize some of the basic facts 
about regression to the mean for researchers and practitioners in the 
field of gifted education. We hoped to dispel notions that regression 
to the mean is attributable solely to errors of measurement. Rather, 
regression is determined by the correlation between two sets of 
scores. Anything that lowers the correlation increases regression to 
the mean. The data that we presented show that, even for highly reli-
able test scores, approximately half of the students who score in the 
top 3% of the score distribution in 1 year will not fall in the top 3% 
of the distribution in the next year. This has important implications 
for both research and practice.

The research implication is that we need more longitudinal inves-
tigations of individual differences in abilities of all sorts. Retesting 
those who are identified as gifted at one point in time provides use-
ful information. However, as shown here, this will commonly miss 
many—or even most—of those who attain high scores on the attri-
bute at some later point in time. Therefore, much more information 
about the origin and development of academic excellence (rather 
than precocity) could be obtained from studies in which the entire 
population of learners was followed over time.
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The primary implication for practice is that one can substantially 
reduce the amount of regression by combining the information from 
multiple assessments. However, different ways of combining scores 
have dramatically different effects on the number of students who 
are admitted and the amount of regression seen in their test scores. 
In general, the statistically optimal method of combining similar 
scores is to average them.

In the end, in addition to multiple measures, local norms pro-
vide a better way to identify students for inclusion in special pro-
grams that are based in the school. Understanding that all abilities 
are developed and that schools play a critical role in that process can 
lead to policies in which children’s reasoning abilities are assessed if 
not as regularly as their achievement, then at least at several points 
in their academic careers. Lacking such understanding, both selec-
tion policies and research on the gifted will continue to give mute 
testimony to the robustness of regression to the mean.
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End Notes

	 1 The more general equation for predicting regression effects when 
the assumption of equal variance is inappropriate can be expressed in 
several ways. A useful equation is Ŷ Y b X Xp y x p= −( )+ , where 
Ŷp is the predicted Y score for person p, Y  is the mean Y score, by x
is the unstandardized coefficient for the regression of Y on X, X p  is 
the X score for person p, and X  is the mean X score.
	 2 Noteworthy exceptions are the dissertation by Tibbetts (2004) 
and Wainer’s (1999) discussion of the same data. Also see the paper 
by Willerman and Fiedler (1977) for an example of regression in IQ 
scores for gifted 4-year-olds.
	 3 In a recent study, Spangler and Sabatino (1995) did not observe 
changes in mean retest IQs for 66 gifted children in a southern 
Appalachian school district. However, children were excluded from 
the study if they “experienced remarkable sensory, physical, health-
related, social, personal or family problems” (p. 208). Further, the 
initial test scores may have been depressed by poor educational 
opportunities for some of the children. The fact that the SD of 
WISC-R IQ scores more than doubled on retest supports this con-
jecture.
	 4 Recent improvements in statistical methods for making infer-
ences from sparsely populated data matrices offer another avenue 
(see, e.g., Schafer & Graham, 2002).
	 5 Estimates were derived using a program called StaTable, which 
is available as a free download at http://www.cytel.com/statable. 
For bivariate normal distributions, StaTable asks for the z scores that 
restrict the distribution (1.8808 for the top 3%), as well as the corre-
lation between the two measures. The proportion of scores falling in 
the restricted range is then given by StaTable. To determine the per-
centage of students falling in the top 3% upon the second measure, 
the proportion given by StaTable was divided by .03, the proportion 
falling in the top 3% at the first measure.
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	 6 Tables illustrating the effects of averaging test scores and of using 
different cut scores for one test than another had to be deleted from 
the manuscript to save space. These are available from the authors on 
request.
	 7 Averaging or summing standard scores effectively weights each 
the same. Regression procedures allow estimation of more nearly 
optimal weights. However, the unit weights implied by summing 
scores generally function about as well as optimal weights on cross-
validation as long as each score makes a reasonable contribution to 
the prediction.
	 8 Missing one more item thus resulted in a substantial shift in 
percentile rank (PR). We moved down the distribution until this was 
no longer a problem.
	 9 We used grade 9 rather than grade 4 or 6 because we were inter-
ested in predicting success over the long haul. However, using the 
regression weights that best predicted grade 4 or grade 6 reading 
would not make much difference.
	 10 Note that an average of two assessments is recommended rather 
than a policy of requiring that the student meet the cut score on two 
successive assessments. The latter rule—whether applied to the same 
assessment administered in different years or to different assessments 
(e.g., achievement and ability) administered in a given year—misses 
many capable students.
	 11 For a summary of research on the contribution of measures of 
motivation to the prediction of academic success, see the excellent 
literature review in Gagné and St Père (2001). However, the Gagné 
and St Père study itself probably underestimates the contribution 
of motivation because the major motivation variable was difference 
score.


